车轮相关图的支配完整性

IF 0.3 Q4 MATHEMATICS
N. H. Shah, P. L. Vihol
{"title":"车轮相关图的支配完整性","authors":"N. H. Shah, P. L. Vihol","doi":"10.17654/0974165823009","DOIUrl":null,"url":null,"abstract":"The total domination integrity of a simple connected graph G with no isolated vertices is denoted by TDI(G) and defined as TDI(G)=min { left | S right |+m(G-S) : S subseteq V(G) }, where S is a total dominating set of G and m(G - S) is the order of a maximum connected component of G - S. It is a new measure of vulnerability of a graph. This work is aimed to discuss total domination integrity of wheel, gear, helm, closed helm, flower graph, web graph, sunflower graph and web graph without center.","PeriodicalId":40868,"journal":{"name":"Advances and Applications in Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TOTAL DOMINATION INTEGRITY OF WHEEL RELATED GRAPHS\",\"authors\":\"N. H. Shah, P. L. Vihol\",\"doi\":\"10.17654/0974165823009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The total domination integrity of a simple connected graph G with no isolated vertices is denoted by TDI(G) and defined as TDI(G)=min { left | S right |+m(G-S) : S subseteq V(G) }, where S is a total dominating set of G and m(G - S) is the order of a maximum connected component of G - S. It is a new measure of vulnerability of a graph. This work is aimed to discuss total domination integrity of wheel, gear, helm, closed helm, flower graph, web graph, sunflower graph and web graph without center.\",\"PeriodicalId\":40868,\"journal\":{\"name\":\"Advances and Applications in Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances and Applications in Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17654/0974165823009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances and Applications in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17654/0974165823009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

无孤立顶点的简单连通图G的总控制完整性用TDI(G)表示,定义为TDI(G)=min{左| S右|+m(G-S): S subseteq V(G)},其中S为G的总控制集,m(G-S)为G-S的最大连通分量的阶数,是一种新的图的脆弱性度量。本研究旨在探讨轮、齿轮、舵、闭舵、花图、网图、向日葵图和无中心网图的总体控制完整性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TOTAL DOMINATION INTEGRITY OF WHEEL RELATED GRAPHS
The total domination integrity of a simple connected graph G with no isolated vertices is denoted by TDI(G) and defined as TDI(G)=min { left | S right |+m(G-S) : S subseteq V(G) }, where S is a total dominating set of G and m(G - S) is the order of a maximum connected component of G - S. It is a new measure of vulnerability of a graph. This work is aimed to discuss total domination integrity of wheel, gear, helm, closed helm, flower graph, web graph, sunflower graph and web graph without center.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
42
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信