{"title":"车轮相关图的支配完整性","authors":"N. H. Shah, P. L. Vihol","doi":"10.17654/0974165823009","DOIUrl":null,"url":null,"abstract":"The total domination integrity of a simple connected graph G with no isolated vertices is denoted by TDI(G) and defined as TDI(G)=min { left | S right |+m(G-S) : S subseteq V(G) }, where S is a total dominating set of G and m(G - S) is the order of a maximum connected component of G - S. It is a new measure of vulnerability of a graph. This work is aimed to discuss total domination integrity of wheel, gear, helm, closed helm, flower graph, web graph, sunflower graph and web graph without center.","PeriodicalId":40868,"journal":{"name":"Advances and Applications in Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TOTAL DOMINATION INTEGRITY OF WHEEL RELATED GRAPHS\",\"authors\":\"N. H. Shah, P. L. Vihol\",\"doi\":\"10.17654/0974165823009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The total domination integrity of a simple connected graph G with no isolated vertices is denoted by TDI(G) and defined as TDI(G)=min { left | S right |+m(G-S) : S subseteq V(G) }, where S is a total dominating set of G and m(G - S) is the order of a maximum connected component of G - S. It is a new measure of vulnerability of a graph. This work is aimed to discuss total domination integrity of wheel, gear, helm, closed helm, flower graph, web graph, sunflower graph and web graph without center.\",\"PeriodicalId\":40868,\"journal\":{\"name\":\"Advances and Applications in Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances and Applications in Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17654/0974165823009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances and Applications in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17654/0974165823009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
无孤立顶点的简单连通图G的总控制完整性用TDI(G)表示,定义为TDI(G)=min{左| S右|+m(G-S): S subseteq V(G)},其中S为G的总控制集,m(G-S)为G-S的最大连通分量的阶数,是一种新的图的脆弱性度量。本研究旨在探讨轮、齿轮、舵、闭舵、花图、网图、向日葵图和无中心网图的总体控制完整性。
TOTAL DOMINATION INTEGRITY OF WHEEL RELATED GRAPHS
The total domination integrity of a simple connected graph G with no isolated vertices is denoted by TDI(G) and defined as TDI(G)=min { left | S right |+m(G-S) : S subseteq V(G) }, where S is a total dominating set of G and m(G - S) is the order of a maximum connected component of G - S. It is a new measure of vulnerability of a graph. This work is aimed to discuss total domination integrity of wheel, gear, helm, closed helm, flower graph, web graph, sunflower graph and web graph without center.