2-参数持久模可分解性的局部刻画

Pub Date : 2023-02-14 DOI:10.1007/s10468-022-10189-4
Magnus B. Botnan, Vadim Lebovici, Steve Oudot
{"title":"2-参数持久模可分解性的局部刻画","authors":"Magnus B. Botnan,&nbsp;Vadim Lebovici,&nbsp;Steve Oudot","doi":"10.1007/s10468-022-10189-4","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the existence of sufficient local conditions under which poset representations decompose as direct sums of indecomposables from a given class. In our work, the indexing poset is the product of two totally ordered sets, corresponding to the setting of 2-parameter persistence in topological data analysis. Our indecomposables of interest belong to the so-called interval modules, which by definition are indicator representations of intervals in the poset. While the whole class of interval modules does not admit such a local characterization, we show that the subclass of rectangle modules does admit one and that it is, in some precise sense, the largest subclass to do so.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Characterizations for Decomposability of 2-Parameter Persistence Modules\",\"authors\":\"Magnus B. Botnan,&nbsp;Vadim Lebovici,&nbsp;Steve Oudot\",\"doi\":\"10.1007/s10468-022-10189-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the existence of sufficient local conditions under which poset representations decompose as direct sums of indecomposables from a given class. In our work, the indexing poset is the product of two totally ordered sets, corresponding to the setting of 2-parameter persistence in topological data analysis. Our indecomposables of interest belong to the so-called interval modules, which by definition are indicator representations of intervals in the poset. While the whole class of interval modules does not admit such a local characterization, we show that the subclass of rectangle modules does admit one and that it is, in some precise sense, the largest subclass to do so.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-022-10189-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-022-10189-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了是否存在充分的局部条件,在这些条件下,poset 表示分解为来自给定类的不可分解数的直接和。在我们的研究中,索引 poset 是两个完全有序集合的乘积,与拓扑数据分析中的 2 参数持久性设置相对应。我们感兴趣的不可分解数属于所谓的区间模块,根据定义,它们是正集合中区间的指标表示。虽然整个区间模块类都不允许这样的局部表征,但我们证明矩形模块子类允许这样的局部表征,而且在某种意义上,它是允许这样表征的最大子类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Local Characterizations for Decomposability of 2-Parameter Persistence Modules

We investigate the existence of sufficient local conditions under which poset representations decompose as direct sums of indecomposables from a given class. In our work, the indexing poset is the product of two totally ordered sets, corresponding to the setting of 2-parameter persistence in topological data analysis. Our indecomposables of interest belong to the so-called interval modules, which by definition are indicator representations of intervals in the poset. While the whole class of interval modules does not admit such a local characterization, we show that the subclass of rectangle modules does admit one and that it is, in some precise sense, the largest subclass to do so.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信