用八阶和九阶RUNGE-KUTTA型方法求解常微分方程vvi(u)=f(u,v,v',v'',v'')

Q3 Multidisciplinary
Manpreet Kaur, Sangeet Kumar, J. Bhatti
{"title":"用八阶和九阶RUNGE-KUTTA型方法求解常微分方程vvi(u)=f(u,v,v',v'',v'')","authors":"Manpreet Kaur, Sangeet Kumar, J. Bhatti","doi":"10.22452/mjs.vol42no2.5","DOIUrl":null,"url":null,"abstract":"The present paper presents the numerical conclusion to solve sixth order initial value ordinary differential equation (ODE). The concept of order conditions for three stage eighth order (RKSD8) & four stage ninth order Runge-Kutta methods (RKSD9) has been derived for finding global truncation error of differential equation The global and local truncated errors norms, zero stability of extended Runge-Kutta method (RK) is well defined and demonstrated with the help of an example.","PeriodicalId":18094,"journal":{"name":"Malaysian journal of science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SOLUTION OF ORDINARY DIFFERENTIAL EQUATION vvi (u)=f(u,v,v',v'',v''') USING EIGHTH AND NINTH ORDER RUNGE-KUTTA TYPE METHOD\",\"authors\":\"Manpreet Kaur, Sangeet Kumar, J. Bhatti\",\"doi\":\"10.22452/mjs.vol42no2.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper presents the numerical conclusion to solve sixth order initial value ordinary differential equation (ODE). The concept of order conditions for three stage eighth order (RKSD8) & four stage ninth order Runge-Kutta methods (RKSD9) has been derived for finding global truncation error of differential equation The global and local truncated errors norms, zero stability of extended Runge-Kutta method (RK) is well defined and demonstrated with the help of an example.\",\"PeriodicalId\":18094,\"journal\":{\"name\":\"Malaysian journal of science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Malaysian journal of science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22452/mjs.vol42no2.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian journal of science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22452/mjs.vol42no2.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了求解六阶常微分方程(ODE)的数值结论。导出了求解微分方程全局截断误差的三阶八阶(RKSD8)和四阶九阶Runge-Kutta方法(RKSD9)的阶条件概念,定义并证明了扩展Runge-Katta方法的全局和局部截断误差范数、零稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SOLUTION OF ORDINARY DIFFERENTIAL EQUATION vvi (u)=f(u,v,v',v'',v''') USING EIGHTH AND NINTH ORDER RUNGE-KUTTA TYPE METHOD
The present paper presents the numerical conclusion to solve sixth order initial value ordinary differential equation (ODE). The concept of order conditions for three stage eighth order (RKSD8) & four stage ninth order Runge-Kutta methods (RKSD9) has been derived for finding global truncation error of differential equation The global and local truncated errors norms, zero stability of extended Runge-Kutta method (RK) is well defined and demonstrated with the help of an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Malaysian journal of science
Malaysian journal of science Multidisciplinary-Multidisciplinary
CiteScore
1.10
自引率
0.00%
发文量
36
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信