将动态网络演化建模为Pitman-Yor过程

IF 1.7 Q2 MATHEMATICS, APPLIED
Francesco Sanna Passino, N. Heard
{"title":"将动态网络演化建模为Pitman-Yor过程","authors":"Francesco Sanna Passino, N. Heard","doi":"10.3934/fods.2019013","DOIUrl":null,"url":null,"abstract":"Dynamic interaction networks frequently arise in biology, communications technology and the social sciences, representing, for example, neuronal connectivity in the brain, internet connections between computers and human interactions within social networks. The evolution and strengthening of the links in such networks can be observed through sequences of connection events occurring between network nodes over time. In some of these applications, the identity and size of the network may be unknown a priori and may change over time. In this article, a model for the evolution of dynamic networks based on the Pitman-Yor process is proposed. This model explicitly admits power-laws in the number of connections on each edge, often present in real world networks, and, for careful choices of the parameters, power-laws for the degree distribution of the nodes. A novel empirical method for the estimation of the hyperparameters of the Pitman-Yor process is proposed, and some necessary corrections for uniform discrete base distributions are carefully addressed. The methodology is tested on synthetic data and in an anomaly detection study on the enterprise computer network of the Los Alamos National Laboratory, and successfully detects connections from a red-team penetration test.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2019-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modelling dynamic network evolution as a Pitman-Yor process\",\"authors\":\"Francesco Sanna Passino, N. Heard\",\"doi\":\"10.3934/fods.2019013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic interaction networks frequently arise in biology, communications technology and the social sciences, representing, for example, neuronal connectivity in the brain, internet connections between computers and human interactions within social networks. The evolution and strengthening of the links in such networks can be observed through sequences of connection events occurring between network nodes over time. In some of these applications, the identity and size of the network may be unknown a priori and may change over time. In this article, a model for the evolution of dynamic networks based on the Pitman-Yor process is proposed. This model explicitly admits power-laws in the number of connections on each edge, often present in real world networks, and, for careful choices of the parameters, power-laws for the degree distribution of the nodes. A novel empirical method for the estimation of the hyperparameters of the Pitman-Yor process is proposed, and some necessary corrections for uniform discrete base distributions are carefully addressed. The methodology is tested on synthetic data and in an anomaly detection study on the enterprise computer network of the Los Alamos National Laboratory, and successfully detects connections from a red-team penetration test.\",\"PeriodicalId\":73054,\"journal\":{\"name\":\"Foundations of data science (Springfield, Mo.)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2019-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of data science (Springfield, Mo.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/fods.2019013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/fods.2019013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

动态交互网络经常出现在生物学、通信技术和社会科学中,例如,代表大脑中的神经元连接、计算机之间的互联网连接和社会网络中的人类交互。这种网络中链接的演变和加强可以通过网络节点之间随时间发生的连接事件序列来观察。在其中一些应用程序中,网络的身份和大小可能是未知的,并且可能随着时间的推移而变化。本文提出了一个基于Pitman-Yor过程的动态网络演化模型。该模型明确承认每条边的连接数存在幂律,这通常出现在现实世界的网络中,并且,对于参数的仔细选择,节点的度分布也存在幂律。提出了一种新的Pitman-Yor过程超参数估计的经验方法,并对均匀离散基分布进行了必要的修正。该方法在综合数据和洛斯阿拉莫斯国家实验室的企业计算机网络异常检测研究中进行了测试,并成功检测到红队渗透测试中的连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling dynamic network evolution as a Pitman-Yor process
Dynamic interaction networks frequently arise in biology, communications technology and the social sciences, representing, for example, neuronal connectivity in the brain, internet connections between computers and human interactions within social networks. The evolution and strengthening of the links in such networks can be observed through sequences of connection events occurring between network nodes over time. In some of these applications, the identity and size of the network may be unknown a priori and may change over time. In this article, a model for the evolution of dynamic networks based on the Pitman-Yor process is proposed. This model explicitly admits power-laws in the number of connections on each edge, often present in real world networks, and, for careful choices of the parameters, power-laws for the degree distribution of the nodes. A novel empirical method for the estimation of the hyperparameters of the Pitman-Yor process is proposed, and some necessary corrections for uniform discrete base distributions are carefully addressed. The methodology is tested on synthetic data and in an anomaly detection study on the enterprise computer network of the Los Alamos National Laboratory, and successfully detects connections from a red-team penetration test.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信