一类奇摄动偏微分方程的单项可和性

Pub Date : 2018-03-18 DOI:10.5565/publmat6512103
S. A. Carrillo
{"title":"一类奇摄动偏微分方程的单项可和性","authors":"S. A. Carrillo","doi":"10.5565/publmat6512103","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to complete the study of asymptotic expansions and summability in a monomial in any number of variables. In particular we characterize these expansions in terms of bounded derivatives and we develop tauberian theorems for the summability processes involved. Furthermore, we develop and apply the Borel-Laplace analysis in this framework to prove the monomial summability of solutions of a specific class of singularly perturbed PDEs.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Summability in a monomial for some classes of singularly perturbed partial differential equations\",\"authors\":\"S. A. Carrillo\",\"doi\":\"10.5565/publmat6512103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to complete the study of asymptotic expansions and summability in a monomial in any number of variables. In particular we characterize these expansions in terms of bounded derivatives and we develop tauberian theorems for the summability processes involved. Furthermore, we develop and apply the Borel-Laplace analysis in this framework to prove the monomial summability of solutions of a specific class of singularly perturbed PDEs.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5565/publmat6512103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6512103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文的目的是完成对任意数量变量的单项式的渐近展开式和可和性的研究。特别地,我们用有界导数来描述这些展开式,并为所涉及的可和过程开发了陶培尔定理。进一步,我们在此框架下发展并应用了Borel-Laplace分析,证明了一类特定奇摄动偏微分方程解的单项式可和性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Summability in a monomial for some classes of singularly perturbed partial differential equations
The aim of this paper is to complete the study of asymptotic expansions and summability in a monomial in any number of variables. In particular we characterize these expansions in terms of bounded derivatives and we develop tauberian theorems for the summability processes involved. Furthermore, we develop and apply the Borel-Laplace analysis in this framework to prove the monomial summability of solutions of a specific class of singularly perturbed PDEs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信