群体异质性中的结构断裂

IF 2.9 2区 数学 Q1 ECONOMICS
Simon C. Smith
{"title":"群体异质性中的结构断裂","authors":"Simon C. Smith","doi":"10.1080/07350015.2022.2063132","DOIUrl":null,"url":null,"abstract":"Abstract Generating accurate forecasts in the presence of structural breaks requires careful management of bias-variance tradeoffs. Forecasting panel data under breaks offers the possibility to reduce parameter estimation error without inducing any bias if there exists a regime-specific pattern of grouped heterogeneity. To this end, we develop a new Bayesian methodology to estimate and formally test panel regression models in the presence of multiple breaks and unobserved regime-specific grouped heterogeneity. In an empirical application to forecasting inflation rates across 20 U.S. industries, our method generates significantly more accurate forecasts relative to a range of popular methods.","PeriodicalId":50247,"journal":{"name":"Journal of Business & Economic Statistics","volume":"41 1","pages":"752 - 764"},"PeriodicalIF":2.9000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Structural Breaks in Grouped Heterogeneity\",\"authors\":\"Simon C. Smith\",\"doi\":\"10.1080/07350015.2022.2063132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Generating accurate forecasts in the presence of structural breaks requires careful management of bias-variance tradeoffs. Forecasting panel data under breaks offers the possibility to reduce parameter estimation error without inducing any bias if there exists a regime-specific pattern of grouped heterogeneity. To this end, we develop a new Bayesian methodology to estimate and formally test panel regression models in the presence of multiple breaks and unobserved regime-specific grouped heterogeneity. In an empirical application to forecasting inflation rates across 20 U.S. industries, our method generates significantly more accurate forecasts relative to a range of popular methods.\",\"PeriodicalId\":50247,\"journal\":{\"name\":\"Journal of Business & Economic Statistics\",\"volume\":\"41 1\",\"pages\":\"752 - 764\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Business & Economic Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07350015.2022.2063132\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business & Economic Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2063132","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 4

摘要

摘要在存在结构断裂的情况下生成准确的预测需要仔细管理偏差-方差权衡。如果存在特定于制度的分组异质性模式,则预测间断下的面板数据提供了在不引起任何偏差的情况下减少参数估计误差的可能性。为此,我们开发了一种新的贝叶斯方法,在存在多重中断和未观察到的特定于制度的分组异质性的情况下,估计并正式测试面板回归模型。在预测20年通货膨胀率的实证应用中 与一系列流行的方法相比,我们的方法在美国工业中产生了更准确的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural Breaks in Grouped Heterogeneity
Abstract Generating accurate forecasts in the presence of structural breaks requires careful management of bias-variance tradeoffs. Forecasting panel data under breaks offers the possibility to reduce parameter estimation error without inducing any bias if there exists a regime-specific pattern of grouped heterogeneity. To this end, we develop a new Bayesian methodology to estimate and formally test panel regression models in the presence of multiple breaks and unobserved regime-specific grouped heterogeneity. In an empirical application to forecasting inflation rates across 20 U.S. industries, our method generates significantly more accurate forecasts relative to a range of popular methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Business & Economic Statistics
Journal of Business & Economic Statistics 数学-统计学与概率论
CiteScore
5.00
自引率
6.70%
发文量
98
审稿时长
>12 weeks
期刊介绍: The Journal of Business and Economic Statistics (JBES) publishes a range of articles, primarily applied statistical analyses of microeconomic, macroeconomic, forecasting, business, and finance related topics. More general papers in statistics, econometrics, computation, simulation, or graphics are also appropriate if they are immediately applicable to the journal''s general topics of interest. Articles published in JBES contain significant results, high-quality methodological content, excellent exposition, and usually include a substantive empirical application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信