{"title":"人工神经网络在核酸分析中的应用:高特异性、高灵敏度的非典型实时荧光曲线的精确判别","authors":"Guijun Miao, Xiaodan Jiang, Yunping Tu, Lulu Zhang, Duli Yu, Shizhi Qian, Xianbo Qiu","doi":"10.1115/1.4056150","DOIUrl":null,"url":null,"abstract":"\n As a division of polymerase chain reaction (PCR), convective PCR (CPCR) is able to achieve highly efficient thermal cycling based on free thermal convection with pseudo-isothermal heating, which could be beneficial to point-of-care (POC) nucleic acid analysis. Similar to traditional PCR or isothermal amplification, due to a couple of issues, e.g., reagent, primer design, reactor, reaction dynamics, amplification status, temperature and heating condition, and other reasons, in some cases of CPCR tests, untypical real-time fluorescence curves with positive or negative tests will show up. Especially, when parts of the characteristics between untypical low-positive and negative tests are mixed together, it is difficult to discriminate between them using traditional cycle threshold (Ct) value method. To handle this issue which may occur in CPCR, traditional PCR or isothermal amplification, as an example, instead of using complicated mathematical modeling and signal processing strategy, an artificial intelligence (AI) classification method with artificial neural network (ANN) modeling is developed to improve the accuracy of nucleic acid detection. It has been proven that both the detection specificity and sensitivity can be significantly improved even with a simple ANN model. It can be estimated that, the developed method based on AI modeling can be adopted to solve similar problem with PCR, or isothermal amplification methods.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of ANN to Nucleic Acid Analysis: Accurate Discrimination for Untypical Real-Time Fluorescence Curves with High Specificity and Sensitivity\",\"authors\":\"Guijun Miao, Xiaodan Jiang, Yunping Tu, Lulu Zhang, Duli Yu, Shizhi Qian, Xianbo Qiu\",\"doi\":\"10.1115/1.4056150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n As a division of polymerase chain reaction (PCR), convective PCR (CPCR) is able to achieve highly efficient thermal cycling based on free thermal convection with pseudo-isothermal heating, which could be beneficial to point-of-care (POC) nucleic acid analysis. Similar to traditional PCR or isothermal amplification, due to a couple of issues, e.g., reagent, primer design, reactor, reaction dynamics, amplification status, temperature and heating condition, and other reasons, in some cases of CPCR tests, untypical real-time fluorescence curves with positive or negative tests will show up. Especially, when parts of the characteristics between untypical low-positive and negative tests are mixed together, it is difficult to discriminate between them using traditional cycle threshold (Ct) value method. To handle this issue which may occur in CPCR, traditional PCR or isothermal amplification, as an example, instead of using complicated mathematical modeling and signal processing strategy, an artificial intelligence (AI) classification method with artificial neural network (ANN) modeling is developed to improve the accuracy of nucleic acid detection. It has been proven that both the detection specificity and sensitivity can be significantly improved even with a simple ANN model. It can be estimated that, the developed method based on AI modeling can be adopted to solve similar problem with PCR, or isothermal amplification methods.\",\"PeriodicalId\":49305,\"journal\":{\"name\":\"Journal of Medical Devices-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Devices-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4056150\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Devices-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056150","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Application of ANN to Nucleic Acid Analysis: Accurate Discrimination for Untypical Real-Time Fluorescence Curves with High Specificity and Sensitivity
As a division of polymerase chain reaction (PCR), convective PCR (CPCR) is able to achieve highly efficient thermal cycling based on free thermal convection with pseudo-isothermal heating, which could be beneficial to point-of-care (POC) nucleic acid analysis. Similar to traditional PCR or isothermal amplification, due to a couple of issues, e.g., reagent, primer design, reactor, reaction dynamics, amplification status, temperature and heating condition, and other reasons, in some cases of CPCR tests, untypical real-time fluorescence curves with positive or negative tests will show up. Especially, when parts of the characteristics between untypical low-positive and negative tests are mixed together, it is difficult to discriminate between them using traditional cycle threshold (Ct) value method. To handle this issue which may occur in CPCR, traditional PCR or isothermal amplification, as an example, instead of using complicated mathematical modeling and signal processing strategy, an artificial intelligence (AI) classification method with artificial neural network (ANN) modeling is developed to improve the accuracy of nucleic acid detection. It has been proven that both the detection specificity and sensitivity can be significantly improved even with a simple ANN model. It can be estimated that, the developed method based on AI modeling can be adopted to solve similar problem with PCR, or isothermal amplification methods.
期刊介绍:
The Journal of Medical Devices presents papers on medical devices that improve diagnostic, interventional and therapeutic treatments focusing on applied research and the development of new medical devices or instrumentation. It provides special coverage of novel devices that allow new surgical strategies, new methods of drug delivery, or possible reductions in the complexity, cost, or adverse results of health care. The Design Innovation category features papers focusing on novel devices, including papers with limited clinical or engineering results. The Medical Device News section provides coverage of advances, trends, and events.