对病毒感染的体液和细胞免疫反应的全局动力学

Q2 Multidisciplinary
Miller Cerón-Gómez, H. Yang
{"title":"对病毒感染的体液和细胞免疫反应的全局动力学","authors":"Miller Cerón-Gómez, H. Yang","doi":"10.11144/javeriana.sc24-2.gdoh","DOIUrl":null,"url":null,"abstract":"We study the global stability of a model of virus dynamics with consideration of humoral and cellular immune responses. We use a Lyapunov direct method to obtain sufficient conditions for the global stability of virus free and viruspresence equilibriums. First, we analyze the model without an immune response and found that if the reproductive number of the virus is less than or equal to one, the virus-free equilibrium is globally asymptotically stable. However, for the virus-presence equilibrium, global stability is obtained if the virus entrance rate into the target cells is less than one. We analyze the model with humoral and cellular immune responses and found similar results. The difference is that in the reproductive number of the virus and in the virus entrance rate into the target cells appear parameters of humoral and cellular immune responses, which means that the adaptive immune response will cease or control the rise of the infection.","PeriodicalId":39200,"journal":{"name":"Universitas Scientiarum","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Global dynamics of humoral and cellular immune responses to virus infection\",\"authors\":\"Miller Cerón-Gómez, H. Yang\",\"doi\":\"10.11144/javeriana.sc24-2.gdoh\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the global stability of a model of virus dynamics with consideration of humoral and cellular immune responses. We use a Lyapunov direct method to obtain sufficient conditions for the global stability of virus free and viruspresence equilibriums. First, we analyze the model without an immune response and found that if the reproductive number of the virus is less than or equal to one, the virus-free equilibrium is globally asymptotically stable. However, for the virus-presence equilibrium, global stability is obtained if the virus entrance rate into the target cells is less than one. We analyze the model with humoral and cellular immune responses and found similar results. The difference is that in the reproductive number of the virus and in the virus entrance rate into the target cells appear parameters of humoral and cellular immune responses, which means that the adaptive immune response will cease or control the rise of the infection.\",\"PeriodicalId\":39200,\"journal\":{\"name\":\"Universitas Scientiarum\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universitas Scientiarum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11144/javeriana.sc24-2.gdoh\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universitas Scientiarum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11144/javeriana.sc24-2.gdoh","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了考虑体液和细胞免疫反应的病毒动力学模型的全局稳定性。我们使用李亚普诺夫直接方法获得了无病毒和有病毒平衡全局稳定的充分条件。首先,我们分析了没有免疫反应的模型,发现如果病毒的繁殖数小于或等于1,则无病毒平衡是全局渐近稳定的。然而,对于病毒存在平衡,如果病毒进入靶细胞的速率小于1,则获得全局稳定性。我们分析了具有体液和细胞免疫反应的模型,并发现了类似的结果。不同之处在于,在病毒的繁殖数量和病毒进入靶细胞的速率上,出现了体液和细胞免疫反应的参数,这意味着适应性免疫反应将停止或控制感染的上升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global dynamics of humoral and cellular immune responses to virus infection
We study the global stability of a model of virus dynamics with consideration of humoral and cellular immune responses. We use a Lyapunov direct method to obtain sufficient conditions for the global stability of virus free and viruspresence equilibriums. First, we analyze the model without an immune response and found that if the reproductive number of the virus is less than or equal to one, the virus-free equilibrium is globally asymptotically stable. However, for the virus-presence equilibrium, global stability is obtained if the virus entrance rate into the target cells is less than one. We analyze the model with humoral and cellular immune responses and found similar results. The difference is that in the reproductive number of the virus and in the virus entrance rate into the target cells appear parameters of humoral and cellular immune responses, which means that the adaptive immune response will cease or control the rise of the infection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Universitas Scientiarum
Universitas Scientiarum Multidisciplinary-Multidisciplinary
CiteScore
1.20
自引率
0.00%
发文量
9
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信