Shengtai Zhou, Renze Jiang, Xue Lei, H. Zou, A. Hrymak
{"title":"模腔厚度对聚丙烯/碳微模电学、形态和热学性能的影响","authors":"Shengtai Zhou, Renze Jiang, Xue Lei, H. Zou, A. Hrymak","doi":"10.1515/ipp-2022-4288","DOIUrl":null,"url":null,"abstract":"Abstract In this work, a comparative study on the electrical conductivity (σ) and thermal properties of polypropylene (PP)/carbon microparts with different part thickness (namely, 0.85 and 0.50 mm) is reported. Two different types of carbon filler (i.e., CNT and CB) were adopted to study the efficacy of different carbon fillers in improving the σ of PP/carbon microparts. In general, the σ of 0.85 mm thickness microparts were higher than the 0.50 mm thickness microparts, regardless of the carbon filler type and testing directions. This suggested that higher shearing conditions that prevailed in the microinjection molding (μIM) process were unfavorable for the formation of intact conductive pathways in corresponding moldings, albeit the distribution of carbon fillers turned better with increasing shear rates, as confirmed by morphology observations. Differential scanning calorimetry results showed that prior thermomechanical histories (including melt blending and μIM) experienced by the polymer melts had an influence on the thermal behavior of subsequent moldings. Also, there existed a strong shear flow-induced crystallization of polymer chains during μIM because the crystallinity of microparts was higher than that of feed materials.","PeriodicalId":14410,"journal":{"name":"International Polymer Processing","volume":"38 1","pages":"214 - 224"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of mold cavity thickness on electrical, morphological and thermal properties of polypropylene/carbon micromoldings\",\"authors\":\"Shengtai Zhou, Renze Jiang, Xue Lei, H. Zou, A. Hrymak\",\"doi\":\"10.1515/ipp-2022-4288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, a comparative study on the electrical conductivity (σ) and thermal properties of polypropylene (PP)/carbon microparts with different part thickness (namely, 0.85 and 0.50 mm) is reported. Two different types of carbon filler (i.e., CNT and CB) were adopted to study the efficacy of different carbon fillers in improving the σ of PP/carbon microparts. In general, the σ of 0.85 mm thickness microparts were higher than the 0.50 mm thickness microparts, regardless of the carbon filler type and testing directions. This suggested that higher shearing conditions that prevailed in the microinjection molding (μIM) process were unfavorable for the formation of intact conductive pathways in corresponding moldings, albeit the distribution of carbon fillers turned better with increasing shear rates, as confirmed by morphology observations. Differential scanning calorimetry results showed that prior thermomechanical histories (including melt blending and μIM) experienced by the polymer melts had an influence on the thermal behavior of subsequent moldings. Also, there existed a strong shear flow-induced crystallization of polymer chains during μIM because the crystallinity of microparts was higher than that of feed materials.\",\"PeriodicalId\":14410,\"journal\":{\"name\":\"International Polymer Processing\",\"volume\":\"38 1\",\"pages\":\"214 - 224\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Polymer Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ipp-2022-4288\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Polymer Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ipp-2022-4288","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Influence of mold cavity thickness on electrical, morphological and thermal properties of polypropylene/carbon micromoldings
Abstract In this work, a comparative study on the electrical conductivity (σ) and thermal properties of polypropylene (PP)/carbon microparts with different part thickness (namely, 0.85 and 0.50 mm) is reported. Two different types of carbon filler (i.e., CNT and CB) were adopted to study the efficacy of different carbon fillers in improving the σ of PP/carbon microparts. In general, the σ of 0.85 mm thickness microparts were higher than the 0.50 mm thickness microparts, regardless of the carbon filler type and testing directions. This suggested that higher shearing conditions that prevailed in the microinjection molding (μIM) process were unfavorable for the formation of intact conductive pathways in corresponding moldings, albeit the distribution of carbon fillers turned better with increasing shear rates, as confirmed by morphology observations. Differential scanning calorimetry results showed that prior thermomechanical histories (including melt blending and μIM) experienced by the polymer melts had an influence on the thermal behavior of subsequent moldings. Also, there existed a strong shear flow-induced crystallization of polymer chains during μIM because the crystallinity of microparts was higher than that of feed materials.
期刊介绍:
International Polymer Processing offers original research contributions, invited review papers and recent technological developments in processing thermoplastics, thermosets, elastomers and fibers as well as polymer reaction engineering. For more than 25 years International Polymer Processing, the journal of the Polymer Processing Society, provides strictly peer-reviewed, high-quality articles and rapid communications from the leading experts around the world.