{"title":"网络特性和流行参数如何影响无标度随机网络的随机SIR动力学","authors":"Sara Sottile, Ozan Kahramanoğulları, M. Sensi","doi":"10.1080/17477778.2022.2100724","DOIUrl":null,"url":null,"abstract":"With the premise that social interactions are described by power-law distributions, we study a SIR stochastic dynamic on a static scale-free random network generated via configuration model. We verify our model with respect to deterministic considerations and provide a theoretical result on the probability of the extinction of the disease. Based on this calibration, we explore the variability in disease spread by stochastic simulations. In particular, we demonstrate how important epidemic indices change as a function of the contagiousness of the disease and the connectivity of the network. Our results quantify the role of starting node degree in determining these indices, commonly used to describe epidemic spread.","PeriodicalId":51296,"journal":{"name":"Journal of Simulation","volume":"1 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"How network properties and epidemic parameters influence stochastic SIR dynamics on scale-free random networks\",\"authors\":\"Sara Sottile, Ozan Kahramanoğulları, M. Sensi\",\"doi\":\"10.1080/17477778.2022.2100724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the premise that social interactions are described by power-law distributions, we study a SIR stochastic dynamic on a static scale-free random network generated via configuration model. We verify our model with respect to deterministic considerations and provide a theoretical result on the probability of the extinction of the disease. Based on this calibration, we explore the variability in disease spread by stochastic simulations. In particular, we demonstrate how important epidemic indices change as a function of the contagiousness of the disease and the connectivity of the network. Our results quantify the role of starting node degree in determining these indices, commonly used to describe epidemic spread.\",\"PeriodicalId\":51296,\"journal\":{\"name\":\"Journal of Simulation\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17477778.2022.2100724\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17477778.2022.2100724","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
How network properties and epidemic parameters influence stochastic SIR dynamics on scale-free random networks
With the premise that social interactions are described by power-law distributions, we study a SIR stochastic dynamic on a static scale-free random network generated via configuration model. We verify our model with respect to deterministic considerations and provide a theoretical result on the probability of the extinction of the disease. Based on this calibration, we explore the variability in disease spread by stochastic simulations. In particular, we demonstrate how important epidemic indices change as a function of the contagiousness of the disease and the connectivity of the network. Our results quantify the role of starting node degree in determining these indices, commonly used to describe epidemic spread.
Journal of SimulationCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-OPERATIONS RESEARCH & MANAGEMENT SCIENCE
CiteScore
5.70
自引率
16.00%
发文量
42
期刊介绍:
Journal of Simulation (JOS) aims to publish both articles and technical notes from researchers and practitioners active in the field of simulation. In JOS, the field of simulation includes the techniques, tools, methods and technologies of the application and the use of discrete-event simulation, agent-based modelling and system dynamics.