Megan Hickman Fulp, Dakota Fulp, Changfeng Zou, Cooper Sanders, Ayan Biswas, Melissa C. Smith, Jon C. Calhoun
{"title":"使用空间和时间属性加速动态数据缩减","authors":"Megan Hickman Fulp, Dakota Fulp, Changfeng Zou, Cooper Sanders, Ayan Biswas, Melissa C. Smith, Jon C. Calhoun","doi":"10.1177/10943420231180504","DOIUrl":null,"url":null,"abstract":"Due to improvements in high-performance computing (HPC) capabilities, many of today’s applications produce petabytes worth of data, causing bottlenecks within the system. Importance-based sampling methods, including our spatio-temporal hybrid data sampling method, are capable of resolving these bottlenecks. While our hybrid method has been shown to outperform existing methods, its effectiveness relies heavily on user parameters, such as histogram bins, error threshold, or number of regions. Moreover, the throughput it demonstrates must be higher to avoid becoming a bottleneck itself. In this article, we resolve both of these issues. First, we assess the effects of several user input parameters and detail techniques to help determine optimal parameters. Next, we detail and implement accelerated versions of our method using OpenMP and CUDA. Upon analyzing our implementations, we find 9.8× to 31.5× throughput improvements. Next, we demonstrate how our method can accept different base sampling algorithms and the effects these different algorithms have. Finally, we compare our sampling methods to the lossy compressor cuSZ in terms of data preservation and data movement.","PeriodicalId":54957,"journal":{"name":"International Journal of High Performance Computing Applications","volume":"37 1","pages":"539 - 559"},"PeriodicalIF":3.5000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Accelerated dynamic data reduction using spatial and temporal properties\",\"authors\":\"Megan Hickman Fulp, Dakota Fulp, Changfeng Zou, Cooper Sanders, Ayan Biswas, Melissa C. Smith, Jon C. Calhoun\",\"doi\":\"10.1177/10943420231180504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to improvements in high-performance computing (HPC) capabilities, many of today’s applications produce petabytes worth of data, causing bottlenecks within the system. Importance-based sampling methods, including our spatio-temporal hybrid data sampling method, are capable of resolving these bottlenecks. While our hybrid method has been shown to outperform existing methods, its effectiveness relies heavily on user parameters, such as histogram bins, error threshold, or number of regions. Moreover, the throughput it demonstrates must be higher to avoid becoming a bottleneck itself. In this article, we resolve both of these issues. First, we assess the effects of several user input parameters and detail techniques to help determine optimal parameters. Next, we detail and implement accelerated versions of our method using OpenMP and CUDA. Upon analyzing our implementations, we find 9.8× to 31.5× throughput improvements. Next, we demonstrate how our method can accept different base sampling algorithms and the effects these different algorithms have. Finally, we compare our sampling methods to the lossy compressor cuSZ in terms of data preservation and data movement.\",\"PeriodicalId\":54957,\"journal\":{\"name\":\"International Journal of High Performance Computing Applications\",\"volume\":\"37 1\",\"pages\":\"539 - 559\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of High Performance Computing Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/10943420231180504\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Performance Computing Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/10943420231180504","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Accelerated dynamic data reduction using spatial and temporal properties
Due to improvements in high-performance computing (HPC) capabilities, many of today’s applications produce petabytes worth of data, causing bottlenecks within the system. Importance-based sampling methods, including our spatio-temporal hybrid data sampling method, are capable of resolving these bottlenecks. While our hybrid method has been shown to outperform existing methods, its effectiveness relies heavily on user parameters, such as histogram bins, error threshold, or number of regions. Moreover, the throughput it demonstrates must be higher to avoid becoming a bottleneck itself. In this article, we resolve both of these issues. First, we assess the effects of several user input parameters and detail techniques to help determine optimal parameters. Next, we detail and implement accelerated versions of our method using OpenMP and CUDA. Upon analyzing our implementations, we find 9.8× to 31.5× throughput improvements. Next, we demonstrate how our method can accept different base sampling algorithms and the effects these different algorithms have. Finally, we compare our sampling methods to the lossy compressor cuSZ in terms of data preservation and data movement.
期刊介绍:
With ever increasing pressure for health services in all countries to meet rising demands, improve their quality and efficiency, and to be more accountable; the need for rigorous research and policy analysis has never been greater. The Journal of Health Services Research & Policy presents the latest scientific research, insightful overviews and reflections on underlying issues, and innovative, thought provoking contributions from leading academics and policy-makers. It provides ideas and hope for solving dilemmas that confront all countries.