风力发电系统中使用扭转滑模控制器的最大功率提取

Asaad Abed Faisal, Turki Kahawish Hassan
{"title":"风力发电系统中使用扭转滑模控制器的最大功率提取","authors":"Asaad Abed Faisal, Turki Kahawish Hassan","doi":"10.31272/jeasd.27.4.9","DOIUrl":null,"url":null,"abstract":"This paper presents a systematic control scheme for a wind energy conversion system with variable speed and describes a permanent magnet synchronous generator PMSG with five phases. The machine employs back-to-back converters, while the grid-side converters are used. Stator current and mechanical rotation speed control are employed to accomplish maximum power point tracking operation on the machine side converter at wind speed below the rated speed. The pitch of the angle is used to limit the extracted wind energy when the wind surpasses the specified wind. The grid current control loop regulates both active and reactive power injection at the unity power factor for the grid side converter. The five-phase PMSG rotor speed is controlled by the twisting sliding mode controller in order to maintain the reference speed in various wind speeds. Performance comparisons between the twisting sliding mode controller, conventional proportional integral controller, and integral sliding mode controller show that the twisting sliding mode controller is superior to the other controllers in steady state error. According to this study, the overall efficiency is increased to 94% when using the TSMC controller rather than the ISMC and PI controllers, which are currently at 92.45% and 88.12% respectively. MATLAB/Simulink simulation results are used to verify the effectiveness of the suggested control technique.","PeriodicalId":33282,"journal":{"name":"Journal of Engineering and Sustainable Development","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MAXIMUM POWER EXTRACTION USING TWISTING SLIDING MODE CONTROLLER FOR WIND ENERGY SYSTEMS\",\"authors\":\"Asaad Abed Faisal, Turki Kahawish Hassan\",\"doi\":\"10.31272/jeasd.27.4.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a systematic control scheme for a wind energy conversion system with variable speed and describes a permanent magnet synchronous generator PMSG with five phases. The machine employs back-to-back converters, while the grid-side converters are used. Stator current and mechanical rotation speed control are employed to accomplish maximum power point tracking operation on the machine side converter at wind speed below the rated speed. The pitch of the angle is used to limit the extracted wind energy when the wind surpasses the specified wind. The grid current control loop regulates both active and reactive power injection at the unity power factor for the grid side converter. The five-phase PMSG rotor speed is controlled by the twisting sliding mode controller in order to maintain the reference speed in various wind speeds. Performance comparisons between the twisting sliding mode controller, conventional proportional integral controller, and integral sliding mode controller show that the twisting sliding mode controller is superior to the other controllers in steady state error. According to this study, the overall efficiency is increased to 94% when using the TSMC controller rather than the ISMC and PI controllers, which are currently at 92.45% and 88.12% respectively. MATLAB/Simulink simulation results are used to verify the effectiveness of the suggested control technique.\",\"PeriodicalId\":33282,\"journal\":{\"name\":\"Journal of Engineering and Sustainable Development\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering and Sustainable Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31272/jeasd.27.4.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering and Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31272/jeasd.27.4.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种变速风能转换系统的系统控制方案,并介绍了一种五相永磁同步发电机PMSG。整机采用背靠背变流器,并网侧变流器。采用定子电流和机械转速控制,在低于额定风速时实现机侧变流器的最大功率点跟踪操作。当风超过指定的风力时,角度的螺距用于限制提取的风能。电网电流控制环在单位功率因数下调节电网侧变流器的有功和无功功率注入。为了在各种风速下保持参考转速,采用扭转滑模控制器控制五相永磁同步电机转子转速。对扭转滑模控制器、传统比例积分控制器和积分滑模控制器的性能比较表明,扭转滑模控制器在稳态误差方面优于其他控制器。根据本研究,使用TSMC控制器而不是ISMC和PI控制器,整体效率提高到94%,ISMC和PI控制器目前分别为92.45%和88.12%。用MATLAB/Simulink仿真结果验证了所提控制技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MAXIMUM POWER EXTRACTION USING TWISTING SLIDING MODE CONTROLLER FOR WIND ENERGY SYSTEMS
This paper presents a systematic control scheme for a wind energy conversion system with variable speed and describes a permanent magnet synchronous generator PMSG with five phases. The machine employs back-to-back converters, while the grid-side converters are used. Stator current and mechanical rotation speed control are employed to accomplish maximum power point tracking operation on the machine side converter at wind speed below the rated speed. The pitch of the angle is used to limit the extracted wind energy when the wind surpasses the specified wind. The grid current control loop regulates both active and reactive power injection at the unity power factor for the grid side converter. The five-phase PMSG rotor speed is controlled by the twisting sliding mode controller in order to maintain the reference speed in various wind speeds. Performance comparisons between the twisting sliding mode controller, conventional proportional integral controller, and integral sliding mode controller show that the twisting sliding mode controller is superior to the other controllers in steady state error. According to this study, the overall efficiency is increased to 94% when using the TSMC controller rather than the ISMC and PI controllers, which are currently at 92.45% and 88.12% respectively. MATLAB/Simulink simulation results are used to verify the effectiveness of the suggested control technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
74
审稿时长
50 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信