R. Ingrosso, P. Lionello, M. Miglietta, G. Salvadori
{"title":"简短通讯:关于龙卷风发生概率的通用公式","authors":"R. Ingrosso, P. Lionello, M. Miglietta, G. Salvadori","doi":"10.5194/nhess-23-2443-2023","DOIUrl":null,"url":null,"abstract":"Abstract. A methodological approach is proposed to provide an analytical (exponential-like) expression for the probability of occurrence of tornadoes as a function of the convective available potential energy and the wind shear (or, alternatively, the storm relative helicity). The resulting expression allows the probability of tornado occurrence to be calculated using variables that are computed by weather prediction and climate models, thus compensating for the lack of resolution needed to resolve these phenomena in numerical simulations.\n","PeriodicalId":18922,"journal":{"name":"Natural Hazards and Earth System Sciences","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brief communication: Towards a universal formula for the probability of tornadoes\",\"authors\":\"R. Ingrosso, P. Lionello, M. Miglietta, G. Salvadori\",\"doi\":\"10.5194/nhess-23-2443-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. A methodological approach is proposed to provide an analytical (exponential-like) expression for the probability of occurrence of tornadoes as a function of the convective available potential energy and the wind shear (or, alternatively, the storm relative helicity). The resulting expression allows the probability of tornado occurrence to be calculated using variables that are computed by weather prediction and climate models, thus compensating for the lack of resolution needed to resolve these phenomena in numerical simulations.\\n\",\"PeriodicalId\":18922,\"journal\":{\"name\":\"Natural Hazards and Earth System Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Hazards and Earth System Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/nhess-23-2443-2023\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Hazards and Earth System Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/nhess-23-2443-2023","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Brief communication: Towards a universal formula for the probability of tornadoes
Abstract. A methodological approach is proposed to provide an analytical (exponential-like) expression for the probability of occurrence of tornadoes as a function of the convective available potential energy and the wind shear (or, alternatively, the storm relative helicity). The resulting expression allows the probability of tornado occurrence to be calculated using variables that are computed by weather prediction and climate models, thus compensating for the lack of resolution needed to resolve these phenomena in numerical simulations.
期刊介绍:
Natural Hazards and Earth System Sciences (NHESS) is an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences. Embracing a holistic Earth system science approach, NHESS serves a wide and diverse community of research scientists, practitioners, and decision makers concerned with detection of natural hazards, monitoring and modelling, vulnerability and risk assessment, and the design and implementation of mitigation and adaptation strategies, including economical, societal, and educational aspects.