高等周氏群的复杂性

Pub Date : 2022-07-29 DOI:10.4153/S0008439522000509
Genival da Silva, James D. Lewis
{"title":"高等周氏群的复杂性","authors":"Genival da Silva, James D. Lewis","doi":"10.4153/S0008439522000509","DOIUrl":null,"url":null,"abstract":"Abstract Let \n$X/{\\mathbb C}$\n be a smooth projective variety. We consider two integral invariants, one of which is the level of the Hodge cohomology algebra \n$H^*(X,{\\mathbb C})$\n and the other involving the complexity of the higher Chow groups \n${\\mathrm {CH}}^*(X,m;{\\mathbb Q})$\n for \n$m\\geq 0$\n . We conjecture that these two invariants are the same and accordingly provide some strong evidence in support of this.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The complexity of higher Chow groups\",\"authors\":\"Genival da Silva, James D. Lewis\",\"doi\":\"10.4153/S0008439522000509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let \\n$X/{\\\\mathbb C}$\\n be a smooth projective variety. We consider two integral invariants, one of which is the level of the Hodge cohomology algebra \\n$H^*(X,{\\\\mathbb C})$\\n and the other involving the complexity of the higher Chow groups \\n${\\\\mathrm {CH}}^*(X,m;{\\\\mathbb Q})$\\n for \\n$m\\\\geq 0$\\n . We conjecture that these two invariants are the same and accordingly provide some strong evidence in support of this.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4153/S0008439522000509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/S0008439522000509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:设$X/{\mathbb C}$是一个光滑的投影变量。我们考虑两个积分不变量,其中一个是Hodge上同代数$H^*(X,{\mathbb C})$的水平,另一个涉及$m\geq 0$的高Chow群的复杂性${\mathrm {CH}}^*(X,m;{\mathbb Q})$。我们推测这两个不变量是相同的,并相应地提供了一些强有力的证据来支持这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The complexity of higher Chow groups
Abstract Let $X/{\mathbb C}$ be a smooth projective variety. We consider two integral invariants, one of which is the level of the Hodge cohomology algebra $H^*(X,{\mathbb C})$ and the other involving the complexity of the higher Chow groups ${\mathrm {CH}}^*(X,m;{\mathbb Q})$ for $m\geq 0$ . We conjecture that these two invariants are the same and accordingly provide some strong evidence in support of this.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信