杂原子取代Keggin型铝氧多阳离子溶液的热老化:聚集行为及其对溶解有机碳和去除浊度的影响

M. Shohel, Jack A. Smith, Margaret A. Carolan, T. Forbes
{"title":"杂原子取代Keggin型铝氧多阳离子溶液的热老化:聚集行为及其对溶解有机碳和去除浊度的影响","authors":"M. Shohel, Jack A. Smith, Margaret A. Carolan, T. Forbes","doi":"10.33774/chemrxiv-2021-gw0h4","DOIUrl":null,"url":null,"abstract":"Coagulation processes within water treatment plays an important role in contaminant removal and aluminum-oxo Keggin polycations are proved to be an effective coagulating agents. Previous work demonstrated that heteroatom substitution within the Keggin-type polycation ε-Al13 to form ε-GaAl12 and ε-GeAl12 can enhance removal of bacteria, DOC, and turbidity from wastewater. Additional hydrolysis of the ε-Al13 species to form larger Al30 species has also been shown to improve coagulation, but this aspect has not been evaluated for the ε-GaAl12 and ε-GeAl12 systems. In the current study, hydrolysis of ε-Al13, ε-GaAl12 and ε-GeAl12 was promoted through hydrothermal aging to evaluate the overall solution stability/behavior and water treatment efficiency. Turbidity measurement of aged solution indicated that Ga substituted aluminum-oxo Keggin polycations remain stable in solution and DLS studies demonstrated greater diversity in particle sizes within the system. Additional thermogravimetric analyses of metal hydroxide precipitates formed from the aging studies indicate that the GaAl12 system behaves more like an amorphous Al(OH)3 phase, which has higher solubility than other aluminum hydroxide phases. Hydrothermal aging did not significantly change %DOC removal as all solution showed high efficiency for removal across a range of pH values. GaAl12 solutions demonstrated good turbidity removal efficiency in all pH range, with enhanced performance at pH 5. The study suggests that larger, relatively stable oligomers do exist within the aged GaAl12 solutions that may contribute to enhanced contaminant removal in a similar manner to what is observed within the PACl-Al30 coagulant.","PeriodicalId":72565,"journal":{"name":"ChemRxiv : the preprint server for chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal aging of heteroatom substituted Keggin type aluminum oxo polycation solutions: Aggregation behavior and impacts on dissolved organic carbon and turbidity removal\",\"authors\":\"M. Shohel, Jack A. Smith, Margaret A. Carolan, T. Forbes\",\"doi\":\"10.33774/chemrxiv-2021-gw0h4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coagulation processes within water treatment plays an important role in contaminant removal and aluminum-oxo Keggin polycations are proved to be an effective coagulating agents. Previous work demonstrated that heteroatom substitution within the Keggin-type polycation ε-Al13 to form ε-GaAl12 and ε-GeAl12 can enhance removal of bacteria, DOC, and turbidity from wastewater. Additional hydrolysis of the ε-Al13 species to form larger Al30 species has also been shown to improve coagulation, but this aspect has not been evaluated for the ε-GaAl12 and ε-GeAl12 systems. In the current study, hydrolysis of ε-Al13, ε-GaAl12 and ε-GeAl12 was promoted through hydrothermal aging to evaluate the overall solution stability/behavior and water treatment efficiency. Turbidity measurement of aged solution indicated that Ga substituted aluminum-oxo Keggin polycations remain stable in solution and DLS studies demonstrated greater diversity in particle sizes within the system. Additional thermogravimetric analyses of metal hydroxide precipitates formed from the aging studies indicate that the GaAl12 system behaves more like an amorphous Al(OH)3 phase, which has higher solubility than other aluminum hydroxide phases. Hydrothermal aging did not significantly change %DOC removal as all solution showed high efficiency for removal across a range of pH values. GaAl12 solutions demonstrated good turbidity removal efficiency in all pH range, with enhanced performance at pH 5. The study suggests that larger, relatively stable oligomers do exist within the aged GaAl12 solutions that may contribute to enhanced contaminant removal in a similar manner to what is observed within the PACl-Al30 coagulant.\",\"PeriodicalId\":72565,\"journal\":{\"name\":\"ChemRxiv : the preprint server for chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemRxiv : the preprint server for chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33774/chemrxiv-2021-gw0h4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv : the preprint server for chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33774/chemrxiv-2021-gw0h4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水处理中的混凝过程在去除污染物方面起着重要作用,铝氧基Keggin聚阳离子被证明是一种有效的混凝剂。先前的工作表明,Keggin型聚阳离子ε-Al13中的杂原子取代形成ε-GaAl12和ε-GeAl12可以增强对废水中细菌、DOC和浊度的去除。ε-Al13物种的额外水解以形成更大的Al30物种也被证明可以改善凝结,但ε-GaAl12和ε-GeAl12系统的这一方面尚未得到评估。在本研究中,通过水热老化促进ε-Al13、ε-GaAl12和ε-GeAl12的水解,以评估整体溶液稳定性/行为和水处理效率。老化溶液的浊度测量表明,Ga取代的铝氧基Keggin聚阳离子在溶液中保持稳定,DLS研究表明,该系统中的颗粒尺寸具有更大的多样性。由老化研究形成的金属氢氧化物沉淀物的额外热重分析表明,GaAl12体系表现得更像无定形Al(OH)3相,其比其他氢氧化铝相具有更高的溶解度。水热老化没有显著改变%DOC去除率,因为所有溶液在一系列pH值范围内都显示出高效去除。GaAl12溶液在所有pH范围内都表现出良好的浊度去除效率,在pH 5时表现出增强的性能。该研究表明,老化的GaAl12溶液中确实存在较大、相对稳定的低聚物,这可能有助于以类似于在PACl-Al30混凝剂中观察到的方式增强污染物去除。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal aging of heteroatom substituted Keggin type aluminum oxo polycation solutions: Aggregation behavior and impacts on dissolved organic carbon and turbidity removal
Coagulation processes within water treatment plays an important role in contaminant removal and aluminum-oxo Keggin polycations are proved to be an effective coagulating agents. Previous work demonstrated that heteroatom substitution within the Keggin-type polycation ε-Al13 to form ε-GaAl12 and ε-GeAl12 can enhance removal of bacteria, DOC, and turbidity from wastewater. Additional hydrolysis of the ε-Al13 species to form larger Al30 species has also been shown to improve coagulation, but this aspect has not been evaluated for the ε-GaAl12 and ε-GeAl12 systems. In the current study, hydrolysis of ε-Al13, ε-GaAl12 and ε-GeAl12 was promoted through hydrothermal aging to evaluate the overall solution stability/behavior and water treatment efficiency. Turbidity measurement of aged solution indicated that Ga substituted aluminum-oxo Keggin polycations remain stable in solution and DLS studies demonstrated greater diversity in particle sizes within the system. Additional thermogravimetric analyses of metal hydroxide precipitates formed from the aging studies indicate that the GaAl12 system behaves more like an amorphous Al(OH)3 phase, which has higher solubility than other aluminum hydroxide phases. Hydrothermal aging did not significantly change %DOC removal as all solution showed high efficiency for removal across a range of pH values. GaAl12 solutions demonstrated good turbidity removal efficiency in all pH range, with enhanced performance at pH 5. The study suggests that larger, relatively stable oligomers do exist within the aged GaAl12 solutions that may contribute to enhanced contaminant removal in a similar manner to what is observed within the PACl-Al30 coagulant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信