关于最大度为3的平面图的区域标记和内区域标记

IF 1 Q1 MATHEMATICS
Andrew Bowling, Ping Zhang
{"title":"关于最大度为3的平面图的区域标记和内区域标记","authors":"Andrew Bowling, Ping Zhang","doi":"10.47443/dml.2023.083","DOIUrl":null,"url":null,"abstract":"A zonal labeling of a plane graph G is an assignment of the two nonzero elements of the ring Z 3 of integers modulo 3 to the vertices of G such that the sum of the labels of the vertices on the boundary of each region of G is the zero element of Z 3 . A plane graph possessing such a labeling is a zonal graph. If there is at most one exception, then the labeling is inner zonal and the graph is inner zonal. In 2019, Chartrand, Egan, and Zhang proved that showing the existence of zonal labelings in all cubic maps is equivalent to giving a proof of the Four Color Theorem. It is shown that every inner zonal cubic map is zonal, thereby establishing an improvement of the 2019 result. It is also shown that (i) while certain 2 -connected plane graphs of maximum degree 3 may not be zonal, they must be inner zonal and (ii) no connected cubic plane graph with bridges can be inner zonal.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On zonal and inner zonal labelings of plane graphs of maximum degree 3\",\"authors\":\"Andrew Bowling, Ping Zhang\",\"doi\":\"10.47443/dml.2023.083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A zonal labeling of a plane graph G is an assignment of the two nonzero elements of the ring Z 3 of integers modulo 3 to the vertices of G such that the sum of the labels of the vertices on the boundary of each region of G is the zero element of Z 3 . A plane graph possessing such a labeling is a zonal graph. If there is at most one exception, then the labeling is inner zonal and the graph is inner zonal. In 2019, Chartrand, Egan, and Zhang proved that showing the existence of zonal labelings in all cubic maps is equivalent to giving a proof of the Four Color Theorem. It is shown that every inner zonal cubic map is zonal, thereby establishing an improvement of the 2019 result. It is also shown that (i) while certain 2 -connected plane graphs of maximum degree 3 may not be zonal, they must be inner zonal and (ii) no connected cubic plane graph with bridges can be inner zonal.\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2023.083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2023.083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

平面图G的区域标记是整数模3的环Z3的两个非零元素对G的顶点的赋值,使得G的每个区域的边界上的顶点的标记之和是Z3的零元素。具有这种标记的平面图是带状图。如果最多有一个例外,则标记为内部区域,图形为内部区域。2019年,Chartrand、Egan和Zhang证明了在所有三次映射中显示区域标记的存在等价于给出了四色定理的证明。结果表明,每一张内部带状三次图都是带状的,从而建立了对2019年结果的改进。还证明了(i)虽然某些最大次数为3的2-连通平面图可能不是带状的,但它们必须是内带状的;(ii)没有带桥的连通三次平面图可以是内带状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On zonal and inner zonal labelings of plane graphs of maximum degree 3
A zonal labeling of a plane graph G is an assignment of the two nonzero elements of the ring Z 3 of integers modulo 3 to the vertices of G such that the sum of the labels of the vertices on the boundary of each region of G is the zero element of Z 3 . A plane graph possessing such a labeling is a zonal graph. If there is at most one exception, then the labeling is inner zonal and the graph is inner zonal. In 2019, Chartrand, Egan, and Zhang proved that showing the existence of zonal labelings in all cubic maps is equivalent to giving a proof of the Four Color Theorem. It is shown that every inner zonal cubic map is zonal, thereby establishing an improvement of the 2019 result. It is also shown that (i) while certain 2 -connected plane graphs of maximum degree 3 may not be zonal, they must be inner zonal and (ii) no connected cubic plane graph with bridges can be inner zonal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信