{"title":"Erdős-Rényi随机图上Ising模型磁化的波动——低温和外磁场的状态","authors":"Z. Kabluchko, Matthias Lowe, K. Schubert","doi":"10.30757/alea.v19-21","DOIUrl":null,"url":null,"abstract":"We continue our analysis of Ising models on the (directed) Erdős-Renyi random graph $G(N,p)$. We prove a quenched Central Limit Theorem for the magnetization and describe the fluctuations of the log-partition function. In the current note we consider the low temperature regime $\\beta>1$ and the case when an external magnetic field is present. In both cases, we assume that $p=p(N)$ satisfies $p^3N \\to \\infty$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fluctuations of the Magnetization for Ising models on Erdős-Rényi random graphs – the regimes of low temperature and external magnetic field\",\"authors\":\"Z. Kabluchko, Matthias Lowe, K. Schubert\",\"doi\":\"10.30757/alea.v19-21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We continue our analysis of Ising models on the (directed) Erdős-Renyi random graph $G(N,p)$. We prove a quenched Central Limit Theorem for the magnetization and describe the fluctuations of the log-partition function. In the current note we consider the low temperature regime $\\\\beta>1$ and the case when an external magnetic field is present. In both cases, we assume that $p=p(N)$ satisfies $p^3N \\\\to \\\\infty$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/alea.v19-21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v19-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fluctuations of the Magnetization for Ising models on Erdős-Rényi random graphs – the regimes of low temperature and external magnetic field
We continue our analysis of Ising models on the (directed) Erdős-Renyi random graph $G(N,p)$. We prove a quenched Central Limit Theorem for the magnetization and describe the fluctuations of the log-partition function. In the current note we consider the low temperature regime $\beta>1$ and the case when an external magnetic field is present. In both cases, we assume that $p=p(N)$ satisfies $p^3N \to \infty$.