Erdős-Rényi随机图上Ising模型磁化的波动——低温和外磁场的状态

Pub Date : 2020-12-15 DOI:10.30757/alea.v19-21
Z. Kabluchko, Matthias Lowe, K. Schubert
{"title":"Erdős-Rényi随机图上Ising模型磁化的波动——低温和外磁场的状态","authors":"Z. Kabluchko, Matthias Lowe, K. Schubert","doi":"10.30757/alea.v19-21","DOIUrl":null,"url":null,"abstract":"We continue our analysis of Ising models on the (directed) Erdős-Renyi random graph $G(N,p)$. We prove a quenched Central Limit Theorem for the magnetization and describe the fluctuations of the log-partition function. In the current note we consider the low temperature regime $\\beta>1$ and the case when an external magnetic field is present. In both cases, we assume that $p=p(N)$ satisfies $p^3N \\to \\infty$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fluctuations of the Magnetization for Ising models on Erdős-Rényi random graphs – the regimes of low temperature and external magnetic field\",\"authors\":\"Z. Kabluchko, Matthias Lowe, K. Schubert\",\"doi\":\"10.30757/alea.v19-21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We continue our analysis of Ising models on the (directed) Erdős-Renyi random graph $G(N,p)$. We prove a quenched Central Limit Theorem for the magnetization and describe the fluctuations of the log-partition function. In the current note we consider the low temperature regime $\\\\beta>1$ and the case when an external magnetic field is present. In both cases, we assume that $p=p(N)$ satisfies $p^3N \\\\to \\\\infty$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/alea.v19-21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v19-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们继续分析(有向)Erdős-Renyi随机图$G(N,p)$上的Ising模型。我们证明了磁化的一个淬灭中心极限定理,并描述了对数配分函数的涨落。在当前的说明中,我们考虑低温状态$\beta>1$和存在外部磁场的情况。在这两种情况下,我们都假设$p=p(N)$满足$p^3N \to \infty$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Fluctuations of the Magnetization for Ising models on Erdős-Rényi random graphs – the regimes of low temperature and external magnetic field
We continue our analysis of Ising models on the (directed) Erdős-Renyi random graph $G(N,p)$. We prove a quenched Central Limit Theorem for the magnetization and describe the fluctuations of the log-partition function. In the current note we consider the low temperature regime $\beta>1$ and the case when an external magnetic field is present. In both cases, we assume that $p=p(N)$ satisfies $p^3N \to \infty$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信