Sobolev空间嵌入常数问题中极值函数的一种显式

Q2 Mathematics
I. Sheipak, T. Garmanova
{"title":"Sobolev空间嵌入常数问题中极值函数的一种显式","authors":"I. Sheipak, T. Garmanova","doi":"10.1090/mosc/292","DOIUrl":null,"url":null,"abstract":"The embedding constants of the Sobolev spaces $\\mathring{W}^n_2[0;1] \\hookrightarrow \\mathring{W}^k_\\infty[0; 1]$ ($0\\leqslant k \\leqslant n-1$) are studied. A relation of the embedding constants with the norms of the functionals $f\\mapsto f^{(k)}(a)$ in the space $\\mathring{W}^n_2[0;1]$ is given. An explicit form of the functions $g_{n;k}\\in \\mathring{W}^n_2[0;1]$ on which these functionals attain their norm is found. These functions are also to be extremal for the embedding constants. A relation of the embedding constants to the Legendre polynomials is put forward. A detailed study is made of the embedding constants with k = 3 and k = 5: we found explicit formulas for extreme points, calculate global maximum points, and give the values of the sharp embedding constants. A link between the embedding constants and some class of spectral problems with distribution coefficients is discovered.","PeriodicalId":37924,"journal":{"name":"Transactions of the Moscow Mathematical Society","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An explicit form for extremal functions in the embedding constant problem for Sobolev spaces\",\"authors\":\"I. Sheipak, T. Garmanova\",\"doi\":\"10.1090/mosc/292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The embedding constants of the Sobolev spaces $\\\\mathring{W}^n_2[0;1] \\\\hookrightarrow \\\\mathring{W}^k_\\\\infty[0; 1]$ ($0\\\\leqslant k \\\\leqslant n-1$) are studied. A relation of the embedding constants with the norms of the functionals $f\\\\mapsto f^{(k)}(a)$ in the space $\\\\mathring{W}^n_2[0;1]$ is given. An explicit form of the functions $g_{n;k}\\\\in \\\\mathring{W}^n_2[0;1]$ on which these functionals attain their norm is found. These functions are also to be extremal for the embedding constants. A relation of the embedding constants to the Legendre polynomials is put forward. A detailed study is made of the embedding constants with k = 3 and k = 5: we found explicit formulas for extreme points, calculate global maximum points, and give the values of the sharp embedding constants. A link between the embedding constants and some class of spectral problems with distribution coefficients is discovered.\",\"PeriodicalId\":37924,\"journal\":{\"name\":\"Transactions of the Moscow Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Moscow Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mosc/292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Moscow Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mosc/292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

摘要

研究了Sobolev空间$\mathring{W}^n2[0];1]\hookrightarrow\mathring{W}^ k\infty[0];1]$($0\leqslant k\leqslantn-1$)的嵌入常数。给出了空间$\mathring{W}^n2[0;1]$中泛函$f\mapsto f^{(k)}(A)$的嵌入常数与范数的关系。找到了函数$g_{n;k}\in\mathring{W}^n2[0;1]$的显式形式,这些函数在该形式上达到了它们的范数。这些函数也是嵌入常数的极值。提出了嵌入常数与勒让德多项式的关系式。对k=3和k=5的嵌入常数进行了详细的研究:我们找到了极值点的显式公式,计算了全局最大点,并给出了尖锐嵌入常数的值。发现了嵌入常数与一类具有分布系数的谱问题之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An explicit form for extremal functions in the embedding constant problem for Sobolev spaces
The embedding constants of the Sobolev spaces $\mathring{W}^n_2[0;1] \hookrightarrow \mathring{W}^k_\infty[0; 1]$ ($0\leqslant k \leqslant n-1$) are studied. A relation of the embedding constants with the norms of the functionals $f\mapsto f^{(k)}(a)$ in the space $\mathring{W}^n_2[0;1]$ is given. An explicit form of the functions $g_{n;k}\in \mathring{W}^n_2[0;1]$ on which these functionals attain their norm is found. These functions are also to be extremal for the embedding constants. A relation of the embedding constants to the Legendre polynomials is put forward. A detailed study is made of the embedding constants with k = 3 and k = 5: we found explicit formulas for extreme points, calculate global maximum points, and give the values of the sharp embedding constants. A link between the embedding constants and some class of spectral problems with distribution coefficients is discovered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transactions of the Moscow Mathematical Society
Transactions of the Moscow Mathematical Society Mathematics-Mathematics (miscellaneous)
自引率
0.00%
发文量
19
期刊介绍: This journal, a translation of Trudy Moskovskogo Matematicheskogo Obshchestva, contains the results of original research in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信