{"title":"钢管混凝土作为构件的粘结强度表征","authors":"Vinay Singh, P. K. Gupta, S. M. Ali Jawaid","doi":"10.56748/ejse.223002","DOIUrl":null,"url":null,"abstract":"Studies done by the previous researchers in Concrete Filled Steel Tubes (CFST) have a significant focus on the bond performance of CFST. This paper includes studies on the evaluation of critical parameters such as interface condition, interface length, infilled concrete strength, and end friction and cross-section dimension in these members. It is found that the effect of interface length had very little impact on the bond stress as it shows a promising value when the interface length is in the range of 200-800 mm and after that, it gets shifted and reduced for larger interface length. But this decrease in the bond stress is affiliated with other parameters, like macro-locking, infilled concrete compressive strength distinctly affects the mean interface bond strength for the sample in the regular condition, the interface bond strength for the most part increases with infilled concrete strength. It is spotted that the friction coefficient of 0.15 is used at both column ends to provide the fixity and it becomes clear that the local buckling pattern of the stub column is independent of the end friction. In both categories of columns, the bond strength among the steel tube and infilled concrete reduced extraordinarily with increased cross-sectional dimension.","PeriodicalId":52513,"journal":{"name":"Electronic Journal of Structural Engineering","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bond strength characterization of concrete filled steel tube as structural member\",\"authors\":\"Vinay Singh, P. K. Gupta, S. M. Ali Jawaid\",\"doi\":\"10.56748/ejse.223002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Studies done by the previous researchers in Concrete Filled Steel Tubes (CFST) have a significant focus on the bond performance of CFST. This paper includes studies on the evaluation of critical parameters such as interface condition, interface length, infilled concrete strength, and end friction and cross-section dimension in these members. It is found that the effect of interface length had very little impact on the bond stress as it shows a promising value when the interface length is in the range of 200-800 mm and after that, it gets shifted and reduced for larger interface length. But this decrease in the bond stress is affiliated with other parameters, like macro-locking, infilled concrete compressive strength distinctly affects the mean interface bond strength for the sample in the regular condition, the interface bond strength for the most part increases with infilled concrete strength. It is spotted that the friction coefficient of 0.15 is used at both column ends to provide the fixity and it becomes clear that the local buckling pattern of the stub column is independent of the end friction. In both categories of columns, the bond strength among the steel tube and infilled concrete reduced extraordinarily with increased cross-sectional dimension.\",\"PeriodicalId\":52513,\"journal\":{\"name\":\"Electronic Journal of Structural Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56748/ejse.223002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56748/ejse.223002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Bond strength characterization of concrete filled steel tube as structural member
Studies done by the previous researchers in Concrete Filled Steel Tubes (CFST) have a significant focus on the bond performance of CFST. This paper includes studies on the evaluation of critical parameters such as interface condition, interface length, infilled concrete strength, and end friction and cross-section dimension in these members. It is found that the effect of interface length had very little impact on the bond stress as it shows a promising value when the interface length is in the range of 200-800 mm and after that, it gets shifted and reduced for larger interface length. But this decrease in the bond stress is affiliated with other parameters, like macro-locking, infilled concrete compressive strength distinctly affects the mean interface bond strength for the sample in the regular condition, the interface bond strength for the most part increases with infilled concrete strength. It is spotted that the friction coefficient of 0.15 is used at both column ends to provide the fixity and it becomes clear that the local buckling pattern of the stub column is independent of the end friction. In both categories of columns, the bond strength among the steel tube and infilled concrete reduced extraordinarily with increased cross-sectional dimension.
期刊介绍:
The Electronic Journal of Structural Engineering (EJSE) is an international forum for the dissemination and discussion of leading edge research and practical applications in Structural Engineering. It comprises peer-reviewed technical papers, discussions and comments, and also news about conferences, workshops etc. in Structural Engineering. Original papers are invited from individuals involved in the field of structural engineering and construction. The areas of special interests include the following, but are not limited to: Analytical and design methods Bridges and High-rise Buildings Case studies and failure investigation Innovations in design and new technology New Construction Materials Performance of Structures Prefabrication Technology Repairs, Strengthening, and Maintenance Stability and Scaffolding Engineering Soil-structure interaction Standards and Codes of Practice Structural and solid mechanics Structural Safety and Reliability Testing Technologies Vibration, impact and structural dynamics Wind and earthquake engineering. EJSE is seeking original papers (research or state-of the art reviews) of the highest quality for consideration for publication. The papers will be published within 3 to 6 months. The papers are expected to make a significant contribution to the research and development activities of the academic and professional engineering community.