叶酸功能化树状纤维纳米二氧化硅的合成及其在羧酸与胺直接酰胺化中的应用

IF 1.4 Q4 NANOSCIENCE & NANOTECHNOLOGY
Sajjad Azizi, Jafar Soleymani, S. Shojaei, N. Shadjou
{"title":"叶酸功能化树状纤维纳米二氧化硅的合成及其在羧酸与胺直接酰胺化中的应用","authors":"Sajjad Azizi, Jafar Soleymani, S. Shojaei, N. Shadjou","doi":"10.22052/JNS.2020.03.020","DOIUrl":null,"url":null,"abstract":"A new nanomaterial based on folic acid functionalized dendritic fibrous nano-silica (FA-KCC-1-NH2) was synthesized and used as a recyclable solid acid and heterogeneous nanocatalyst towards efficient amidation of a variety of carboxylic acids with amines in toluene under reflux conditions. KCC-1 porous nanomaterials were produced utilizing a hydrothermal technique and in the next functionalized with folic acid moieties to yield KCC-1-NH-FA nanocatalyst. The structure of KCC-1, KCC-1-NH2 and KCC-1-NH-FA nanoparticles were investigated by FESEM, DLS, zeta potential and TEM, instrumental techniques. Also, the pore size of KCC-1-NH-FA nanoparticles were moreover investigated with BET where results revealed that the surface of this nanocomposite was expanded. The synthesized KCC-1-NH-FA nanoparticles showed effective catalytic activity in amidation of carboxylic acids with amines affording in high yields (76-89%) and short period of times. Moreover, other advantages of present method are easy workup, no need to use of chromatographic column and excellent recyclability of catalyst without significant loss in its catalytic activity which gives economic rewards.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"10 1","pages":"671-681"},"PeriodicalIF":1.4000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synthesize of Folic acid functionalized dendritic fibrous nano-silica and its application as an efficient nanocatalyst for access to direct amidation of carboxylic acids with amines\",\"authors\":\"Sajjad Azizi, Jafar Soleymani, S. Shojaei, N. Shadjou\",\"doi\":\"10.22052/JNS.2020.03.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new nanomaterial based on folic acid functionalized dendritic fibrous nano-silica (FA-KCC-1-NH2) was synthesized and used as a recyclable solid acid and heterogeneous nanocatalyst towards efficient amidation of a variety of carboxylic acids with amines in toluene under reflux conditions. KCC-1 porous nanomaterials were produced utilizing a hydrothermal technique and in the next functionalized with folic acid moieties to yield KCC-1-NH-FA nanocatalyst. The structure of KCC-1, KCC-1-NH2 and KCC-1-NH-FA nanoparticles were investigated by FESEM, DLS, zeta potential and TEM, instrumental techniques. Also, the pore size of KCC-1-NH-FA nanoparticles were moreover investigated with BET where results revealed that the surface of this nanocomposite was expanded. The synthesized KCC-1-NH-FA nanoparticles showed effective catalytic activity in amidation of carboxylic acids with amines affording in high yields (76-89%) and short period of times. Moreover, other advantages of present method are easy workup, no need to use of chromatographic column and excellent recyclability of catalyst without significant loss in its catalytic activity which gives economic rewards.\",\"PeriodicalId\":16523,\"journal\":{\"name\":\"Journal of Nanostructures\",\"volume\":\"10 1\",\"pages\":\"671-681\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/JNS.2020.03.020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/JNS.2020.03.020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

合成了一种基于叶酸功能化树枝状纤维纳米二氧化硅(FA-KCC-1-NH2)的新型纳米材料,并将其用作可回收的固体酸和非均相纳米催化剂,在回流条件下实现多种羧酸与胺在甲苯中的有效酰胺化。利用水热技术制备KCC-1多孔纳米材料,并在下一步用叶酸部分官能化以产生KCC-1-NH-FA纳米催化剂。利用FESEM、DLS、ζ电位和TEM等仪器技术研究了KCC-1、KCC-1-NH2和KCC-1-NH-FA纳米粒子的结构。此外,还用BET研究了KCC-1-NH-FA纳米颗粒的孔径,结果显示该纳米复合材料的表面膨胀。合成的KCC-1-NH-FA纳米颗粒在羧酸与胺的酰胺化反应中表现出有效的催化活性,产率高(76-89%),反应时间短。此外,本方法的其他优点是易于处理,不需要使用色谱柱,催化剂具有良好的可回收性,催化活性没有显著损失,具有经济效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesize of Folic acid functionalized dendritic fibrous nano-silica and its application as an efficient nanocatalyst for access to direct amidation of carboxylic acids with amines
A new nanomaterial based on folic acid functionalized dendritic fibrous nano-silica (FA-KCC-1-NH2) was synthesized and used as a recyclable solid acid and heterogeneous nanocatalyst towards efficient amidation of a variety of carboxylic acids with amines in toluene under reflux conditions. KCC-1 porous nanomaterials were produced utilizing a hydrothermal technique and in the next functionalized with folic acid moieties to yield KCC-1-NH-FA nanocatalyst. The structure of KCC-1, KCC-1-NH2 and KCC-1-NH-FA nanoparticles were investigated by FESEM, DLS, zeta potential and TEM, instrumental techniques. Also, the pore size of KCC-1-NH-FA nanoparticles were moreover investigated with BET where results revealed that the surface of this nanocomposite was expanded. The synthesized KCC-1-NH-FA nanoparticles showed effective catalytic activity in amidation of carboxylic acids with amines affording in high yields (76-89%) and short period of times. Moreover, other advantages of present method are easy workup, no need to use of chromatographic column and excellent recyclability of catalyst without significant loss in its catalytic activity which gives economic rewards.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanostructures
Journal of Nanostructures NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊介绍: Journal of Nanostructures is a medium for global academics to exchange and disseminate their knowledge as well as the latest discoveries and advances in the science and engineering of nanostructured materials. Topics covered in the journal include, but are not limited to the following: Nanosystems for solar cell, energy, catalytic and environmental applications Quantum dots, nanocrystalline materials, nanoparticles, nanocomposites Characterization of nanostructures and size dependent properties Fullerenes, carbon nanotubes and graphene Self-assembly and molecular organization Super hydrophobic surface and material Synthesis of nanostructured materials Nanobiotechnology and nanomedicine Functionalization of nanostructures Nanomagnetics Nanosensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信