投影平面上的Fermat-Torricelli问题

Pub Date : 2021-09-03 DOI:10.7146/math.scand.a-133419
M. Tsakiris, Sihang Xu
{"title":"投影平面上的Fermat-Torricelli问题","authors":"M. Tsakiris, Sihang Xu","doi":"10.7146/math.scand.a-133419","DOIUrl":null,"url":null,"abstract":"We pose and study the Fermat-Torricelli problem for a triangle in the projective plane under the sine distance. Our main finding is that if every side of the triangle has length greater than $\\sin 60^\\circ $, then the Fermat-Torricelli point is the vertex opposite the longest side. Our proof relies on a complete characterization of the equilateral case together with a deformation argument.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Fermat-Torricelli problem in the projective plane\",\"authors\":\"M. Tsakiris, Sihang Xu\",\"doi\":\"10.7146/math.scand.a-133419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We pose and study the Fermat-Torricelli problem for a triangle in the projective plane under the sine distance. Our main finding is that if every side of the triangle has length greater than $\\\\sin 60^\\\\circ $, then the Fermat-Torricelli point is the vertex opposite the longest side. Our proof relies on a complete characterization of the equilateral case together with a deformation argument.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-133419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-133419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出并研究了正弦距离下投影平面上三角形的费马-托里拆利问题。我们的主要发现是,如果三角形的每条边的长度都大于sin60 ^ circ,那么费马-托里切利点就是最长边对面的顶点。我们的证明依赖于对等边情况的完整描述以及变形论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The Fermat-Torricelli problem in the projective plane
We pose and study the Fermat-Torricelli problem for a triangle in the projective plane under the sine distance. Our main finding is that if every side of the triangle has length greater than $\sin 60^\circ $, then the Fermat-Torricelli point is the vertex opposite the longest side. Our proof relies on a complete characterization of the equilateral case together with a deformation argument.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信