{"title":"投影平面上的Fermat-Torricelli问题","authors":"M. Tsakiris, Sihang Xu","doi":"10.7146/math.scand.a-133419","DOIUrl":null,"url":null,"abstract":"We pose and study the Fermat-Torricelli problem for a triangle in the projective plane under the sine distance. Our main finding is that if every side of the triangle has length greater than $\\sin 60^\\circ $, then the Fermat-Torricelli point is the vertex opposite the longest side. Our proof relies on a complete characterization of the equilateral case together with a deformation argument.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Fermat-Torricelli problem in the projective plane\",\"authors\":\"M. Tsakiris, Sihang Xu\",\"doi\":\"10.7146/math.scand.a-133419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We pose and study the Fermat-Torricelli problem for a triangle in the projective plane under the sine distance. Our main finding is that if every side of the triangle has length greater than $\\\\sin 60^\\\\circ $, then the Fermat-Torricelli point is the vertex opposite the longest side. Our proof relies on a complete characterization of the equilateral case together with a deformation argument.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-133419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-133419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Fermat-Torricelli problem in the projective plane
We pose and study the Fermat-Torricelli problem for a triangle in the projective plane under the sine distance. Our main finding is that if every side of the triangle has length greater than $\sin 60^\circ $, then the Fermat-Torricelli point is the vertex opposite the longest side. Our proof relies on a complete characterization of the equilateral case together with a deformation argument.