{"title":"准曲面上环的拟李双代数","authors":"V. Turaev","doi":"10.1215/21562261-2022-0034","DOIUrl":null,"url":null,"abstract":"We discuss natural operations on loops in a quasi-surface and show that these operations define a structure of a quasi-Lie bialgebra in the module generated by the set of free homotopy classes of non-contractible loops.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Quasi-Lie bialgebras of loops in quasisurfaces\",\"authors\":\"V. Turaev\",\"doi\":\"10.1215/21562261-2022-0034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss natural operations on loops in a quasi-surface and show that these operations define a structure of a quasi-Lie bialgebra in the module generated by the set of free homotopy classes of non-contractible loops.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-2022-0034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2022-0034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We discuss natural operations on loops in a quasi-surface and show that these operations define a structure of a quasi-Lie bialgebra in the module generated by the set of free homotopy classes of non-contractible loops.