Y. Talebi, A. R. M. Hamzekolaee, M. Hosseinpour, S. Asgari
{"title":"t-提升模的一个新推广","authors":"Y. Talebi, A. R. M. Hamzekolaee, M. Hosseinpour, S. Asgari","doi":"10.22124/JART.2020.16482.1203","DOIUrl":null,"url":null,"abstract":"In this paper we introduce the concept of $tCC$-modu-les which is a proper generalizationof ($t$-)lifting modules. Let $M$ be a module over a ring $R$.We call $M$ a $tCC$-module(related to $t$-coclosed submodules) provided that for every$t$-coclosed submodule $N$ of $M$, there exists a direct summand $K$ of $M$such that $M=N+K$ and $Ncap Kll K$.We prove that a module with $(D_3)$ property is $tCC$if and only if every direct summand of $M$ is $tCC$. It is also shownthat an amply supplemented module $M$ is $tCC$ if and only if $M$ decomposed to$overline{Z}^2(M)$ and a submodule $L$ of $M$ that both of them are $tCC$.","PeriodicalId":52302,"journal":{"name":"Journal of Algebra and Related Topics","volume":"8 1","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new generalization of t-lifting modules\",\"authors\":\"Y. Talebi, A. R. M. Hamzekolaee, M. Hosseinpour, S. Asgari\",\"doi\":\"10.22124/JART.2020.16482.1203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce the concept of $tCC$-modu-les which is a proper generalizationof ($t$-)lifting modules. Let $M$ be a module over a ring $R$.We call $M$ a $tCC$-module(related to $t$-coclosed submodules) provided that for every$t$-coclosed submodule $N$ of $M$, there exists a direct summand $K$ of $M$such that $M=N+K$ and $Ncap Kll K$.We prove that a module with $(D_3)$ property is $tCC$if and only if every direct summand of $M$ is $tCC$. It is also shownthat an amply supplemented module $M$ is $tCC$ if and only if $M$ decomposed to$overline{Z}^2(M)$ and a submodule $L$ of $M$ that both of them are $tCC$.\",\"PeriodicalId\":52302,\"journal\":{\"name\":\"Journal of Algebra and Related Topics\",\"volume\":\"8 1\",\"pages\":\"1-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra and Related Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22124/JART.2020.16482.1203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22124/JART.2020.16482.1203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
In this paper we introduce the concept of $tCC$-modu-les which is a proper generalizationof ($t$-)lifting modules. Let $M$ be a module over a ring $R$.We call $M$ a $tCC$-module(related to $t$-coclosed submodules) provided that for every$t$-coclosed submodule $N$ of $M$, there exists a direct summand $K$ of $M$such that $M=N+K$ and $Ncap Kll K$.We prove that a module with $(D_3)$ property is $tCC$if and only if every direct summand of $M$ is $tCC$. It is also shownthat an amply supplemented module $M$ is $tCC$ if and only if $M$ decomposed to$overline{Z}^2(M)$ and a submodule $L$ of $M$ that both of them are $tCC$.