$K3$曲面族和(2,3)-环面型曲线

IF 0.4 4区 数学 Q4 MATHEMATICS
Makiko Mase
{"title":"$K3$曲面族和(2,3)-环面型曲线","authors":"Makiko Mase","doi":"10.2996/kmj/1572487224","DOIUrl":null,"url":null,"abstract":"We study families of $K3$ surfaces obtained by double covering of the projective plane branching along curves of $(2,3)$-torus type. In the first part, we study the Picard lattices of the families, and a lattice duality of them. In the second part, we describe a deformation of singularities of Gorenstein $K3$ surfaces in these families.","PeriodicalId":54747,"journal":{"name":"Kodai Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2019-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Families of $K3$ surfaces and curves of (2,3)-torus type\",\"authors\":\"Makiko Mase\",\"doi\":\"10.2996/kmj/1572487224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study families of $K3$ surfaces obtained by double covering of the projective plane branching along curves of $(2,3)$-torus type. In the first part, we study the Picard lattices of the families, and a lattice duality of them. In the second part, we describe a deformation of singularities of Gorenstein $K3$ surfaces in these families.\",\"PeriodicalId\":54747,\"journal\":{\"name\":\"Kodai Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kodai Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2996/kmj/1572487224\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kodai Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2996/kmj/1572487224","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们研究了沿$(2,3)$-环型曲线的投影平面分支的双覆盖得到的$K3$曲面族。在第一部分中,我们研究了族的皮卡德格,以及它们的格对偶性。在第二部分中,我们描述了这些族中Gorenstein $K3$曲面奇异点的变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Families of $K3$ surfaces and curves of (2,3)-torus type
We study families of $K3$ surfaces obtained by double covering of the projective plane branching along curves of $(2,3)$-torus type. In the first part, we study the Picard lattices of the families, and a lattice duality of them. In the second part, we describe a deformation of singularities of Gorenstein $K3$ surfaces in these families.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Kodai Mathematical Journal is edited by the Department of Mathematics, Tokyo Institute of Technology. The journal was issued from 1949 until 1977 as Kodai Mathematical Seminar Reports, and was renewed in 1978 under the present name. The journal is published three times yearly and includes original papers in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信