求解中子扩散问题的高阶U - N方法

IF 0.7 4区 工程技术 Q3 MATHEMATICS, APPLIED
H. Öztürk, Ahmet Tuğralı
{"title":"求解中子扩散问题的高阶U - N方法","authors":"H. Öztürk, Ahmet Tuğralı","doi":"10.1080/23324309.2022.2078369","DOIUrl":null,"url":null,"abstract":"Abstract The first application of the U N (Chebyshev polynomials of the second kind) method with higher order approximations is performed to solve the neutron diffusion problem in a slab reactor. The moments of equations are carried out by solving neutron transport equation using first the conventional spherical harmonics (P N) and then the U N method. These differential equations with constant coefficients are then solved together to obtain the diffusion equation corresponding to related approximation. The roots of the diffusion equation are estimated to calculate the diffusion lengths of the neutrons for various values of c, the number of secondary neutrons per collision. Numerical results obtained by the present method with its easily executable equations are tabulated with the ones already existing in literature. A good accordance is observed between them. Better results are also obtained than the conventional P N method for certain values of c.","PeriodicalId":54305,"journal":{"name":"Journal of Computational and Theoretical Transport","volume":"51 1","pages":"66 - 79"},"PeriodicalIF":0.7000,"publicationDate":"2022-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher Order U N Method for the Solution of the Neutron Diffusion Problem\",\"authors\":\"H. Öztürk, Ahmet Tuğralı\",\"doi\":\"10.1080/23324309.2022.2078369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The first application of the U N (Chebyshev polynomials of the second kind) method with higher order approximations is performed to solve the neutron diffusion problem in a slab reactor. The moments of equations are carried out by solving neutron transport equation using first the conventional spherical harmonics (P N) and then the U N method. These differential equations with constant coefficients are then solved together to obtain the diffusion equation corresponding to related approximation. The roots of the diffusion equation are estimated to calculate the diffusion lengths of the neutrons for various values of c, the number of secondary neutrons per collision. Numerical results obtained by the present method with its easily executable equations are tabulated with the ones already existing in literature. A good accordance is observed between them. Better results are also obtained than the conventional P N method for certain values of c.\",\"PeriodicalId\":54305,\"journal\":{\"name\":\"Journal of Computational and Theoretical Transport\",\"volume\":\"51 1\",\"pages\":\"66 - 79\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Theoretical Transport\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/23324309.2022.2078369\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Theoretical Transport","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/23324309.2022.2078369","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要首次应用具有高阶近似的U N(第二类切比雪夫多项式)方法求解平板堆中的中子扩散问题。方程的矩是通过求解中子输运方程来实现的,首先使用常规的球谐函数(PN),然后使用U N方法。然后将这些具有常系数的微分方程一起求解,以获得对应于相关近似的扩散方程。对扩散方程的根进行了估计,以计算不同c值的中子扩散长度,即每次碰撞的二次中子数。通过本方法及其易于执行的方程获得的数值结果与文献中已有的结果制成表格。他们之间的关系很好。对于c的某些值,也获得了比传统的PN方法更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher Order U N Method for the Solution of the Neutron Diffusion Problem
Abstract The first application of the U N (Chebyshev polynomials of the second kind) method with higher order approximations is performed to solve the neutron diffusion problem in a slab reactor. The moments of equations are carried out by solving neutron transport equation using first the conventional spherical harmonics (P N) and then the U N method. These differential equations with constant coefficients are then solved together to obtain the diffusion equation corresponding to related approximation. The roots of the diffusion equation are estimated to calculate the diffusion lengths of the neutrons for various values of c, the number of secondary neutrons per collision. Numerical results obtained by the present method with its easily executable equations are tabulated with the ones already existing in literature. A good accordance is observed between them. Better results are also obtained than the conventional P N method for certain values of c.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational and Theoretical Transport
Journal of Computational and Theoretical Transport Mathematics-Mathematical Physics
CiteScore
1.30
自引率
0.00%
发文量
15
期刊介绍: Emphasizing computational methods and theoretical studies, this unique journal invites articles on neutral-particle transport, kinetic theory, radiative transfer, charged-particle transport, and macroscopic transport phenomena. In addition, the journal encourages articles on uncertainty quantification related to these fields. Offering a range of information and research methodologies unavailable elsewhere, Journal of Computational and Theoretical Transport brings together closely related mathematical concepts and techniques to encourage a productive, interdisciplinary exchange of ideas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信