{"title":"与Γ和β函数有关的一些特殊矩阵的高相对精度","authors":"J. Delgado, J. Peña","doi":"10.1002/nla.2494","DOIUrl":null,"url":null,"abstract":"For some families of totally positive matrices using Γ$$ \\Gamma $$ and β$$ \\beta $$ functions, we provide their bidiagonal factorization. Moreover, when these functions are defined over integers, we prove that the bidiagonal factorization can be computed with high relative accuracy and so we can compute with high relative accuracy their eigenvalues, singular values, inverses and the solutions of some associated linear systems. We provide numerical examples illustrating this high relative accuracy.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High relative accuracy with some special matrices related to Γ and β functions\",\"authors\":\"J. Delgado, J. Peña\",\"doi\":\"10.1002/nla.2494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For some families of totally positive matrices using Γ$$ \\\\Gamma $$ and β$$ \\\\beta $$ functions, we provide their bidiagonal factorization. Moreover, when these functions are defined over integers, we prove that the bidiagonal factorization can be computed with high relative accuracy and so we can compute with high relative accuracy their eigenvalues, singular values, inverses and the solutions of some associated linear systems. We provide numerical examples illustrating this high relative accuracy.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2494\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2494","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
High relative accuracy with some special matrices related to Γ and β functions
For some families of totally positive matrices using Γ$$ \Gamma $$ and β$$ \beta $$ functions, we provide their bidiagonal factorization. Moreover, when these functions are defined over integers, we prove that the bidiagonal factorization can be computed with high relative accuracy and so we can compute with high relative accuracy their eigenvalues, singular values, inverses and the solutions of some associated linear systems. We provide numerical examples illustrating this high relative accuracy.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.