与Γ和β函数有关的一些特殊矩阵的高相对精度

IF 1.8 3区 数学 Q1 MATHEMATICS
J. Delgado, J. Peña
{"title":"与Γ和β函数有关的一些特殊矩阵的高相对精度","authors":"J. Delgado, J. Peña","doi":"10.1002/nla.2494","DOIUrl":null,"url":null,"abstract":"For some families of totally positive matrices using Γ$$ \\Gamma $$ and β$$ \\beta $$ functions, we provide their bidiagonal factorization. Moreover, when these functions are defined over integers, we prove that the bidiagonal factorization can be computed with high relative accuracy and so we can compute with high relative accuracy their eigenvalues, singular values, inverses and the solutions of some associated linear systems. We provide numerical examples illustrating this high relative accuracy.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High relative accuracy with some special matrices related to Γ and β functions\",\"authors\":\"J. Delgado, J. Peña\",\"doi\":\"10.1002/nla.2494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For some families of totally positive matrices using Γ$$ \\\\Gamma $$ and β$$ \\\\beta $$ functions, we provide their bidiagonal factorization. Moreover, when these functions are defined over integers, we prove that the bidiagonal factorization can be computed with high relative accuracy and so we can compute with high relative accuracy their eigenvalues, singular values, inverses and the solutions of some associated linear systems. We provide numerical examples illustrating this high relative accuracy.\",\"PeriodicalId\":49731,\"journal\":{\"name\":\"Numerical Linear Algebra with Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Linear Algebra with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2494\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2494","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于一些使用Γ$$\Gamma$$和β$$\beta$$函数的全正矩阵族,我们给出了它们的二重分解。此外,当这些函数定义在整数上时,我们证明了双对角因子分解可以以高相对精度计算,因此我们可以以高的相对精度计算它们的特征值、奇异值、逆和一些相关线性系统的解。我们提供了说明这种高相对精度的数值例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High relative accuracy with some special matrices related to Γ and β functions
For some families of totally positive matrices using Γ$$ \Gamma $$ and β$$ \beta $$ functions, we provide their bidiagonal factorization. Moreover, when these functions are defined over integers, we prove that the bidiagonal factorization can be computed with high relative accuracy and so we can compute with high relative accuracy their eigenvalues, singular values, inverses and the solutions of some associated linear systems. We provide numerical examples illustrating this high relative accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
2.30%
发文量
50
审稿时长
12 months
期刊介绍: Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review. Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects. Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信