{"title":"重新审视倾向得分的核心作用:在因果机器学习时代实现平衡与效率的桥梁","authors":"N. Hejazi, M. J. van der Laan","doi":"10.1353/obs.2023.0001","DOIUrl":null,"url":null,"abstract":"Abstract:About forty years ago, in a now–seminal contribution, Rosenbaum and Rubin (1983) introduced a critical characterization of the propensity score as a central quantity for drawing causal inferences in observational study settings. In the decades since, much progress has been made across several research frontiers in causal inference, notably including the re-weighting and matching paradigms. Focusing on the former and specifically on its intersection with machine learning and semiparametric efficiency theory, we re-examine the role of the propensity score in modern methodological developments. As Rosenbaum and Rubin (1983)’s contribution spurred a focus on the balancing property of the propensity score, we re-examine the degree to which and how this property plays a role in the development of asymptotically efficient estimators of causal effects; moreover, we discuss a connection between the balancing property and efficient estimation in the form of score equations and propose a score test for evaluating whether an estimator achieves empirical balance.","PeriodicalId":74335,"journal":{"name":"Observational studies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting the Propensity Score’s Central Role: Towards Bridging Balance and Efficiency in the Era of Causal Machine Learning\",\"authors\":\"N. Hejazi, M. J. van der Laan\",\"doi\":\"10.1353/obs.2023.0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract:About forty years ago, in a now–seminal contribution, Rosenbaum and Rubin (1983) introduced a critical characterization of the propensity score as a central quantity for drawing causal inferences in observational study settings. In the decades since, much progress has been made across several research frontiers in causal inference, notably including the re-weighting and matching paradigms. Focusing on the former and specifically on its intersection with machine learning and semiparametric efficiency theory, we re-examine the role of the propensity score in modern methodological developments. As Rosenbaum and Rubin (1983)’s contribution spurred a focus on the balancing property of the propensity score, we re-examine the degree to which and how this property plays a role in the development of asymptotically efficient estimators of causal effects; moreover, we discuss a connection between the balancing property and efficient estimation in the form of score equations and propose a score test for evaluating whether an estimator achieves empirical balance.\",\"PeriodicalId\":74335,\"journal\":{\"name\":\"Observational studies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Observational studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1353/obs.2023.0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Observational studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/obs.2023.0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Revisiting the Propensity Score’s Central Role: Towards Bridging Balance and Efficiency in the Era of Causal Machine Learning
Abstract:About forty years ago, in a now–seminal contribution, Rosenbaum and Rubin (1983) introduced a critical characterization of the propensity score as a central quantity for drawing causal inferences in observational study settings. In the decades since, much progress has been made across several research frontiers in causal inference, notably including the re-weighting and matching paradigms. Focusing on the former and specifically on its intersection with machine learning and semiparametric efficiency theory, we re-examine the role of the propensity score in modern methodological developments. As Rosenbaum and Rubin (1983)’s contribution spurred a focus on the balancing property of the propensity score, we re-examine the degree to which and how this property plays a role in the development of asymptotically efficient estimators of causal effects; moreover, we discuss a connection between the balancing property and efficient estimation in the form of score equations and propose a score test for evaluating whether an estimator achieves empirical balance.