冻融循环后水工混凝土单轴动态拉伸性能研究

IF 0.8 Q4 ENGINEERING, CIVIL
Haitao Wang, Haoyu Sun, Xinxin Zhuang
{"title":"冻融循环后水工混凝土单轴动态拉伸性能研究","authors":"Haitao Wang, Haoyu Sun, Xinxin Zhuang","doi":"10.56748/ejse.182682","DOIUrl":null,"url":null,"abstract":"In this paper, freeze-thaw cycles tests of 0, 25, 50, 75 and 100 times for large aggregate concrete were carried out and uniaxial dynamic tensile tests under the strain rates of 10-5/s, 10-4/s, 10-3/s and 10-2/s were also performed. The damage morphology of the specimens after freezing-thawing cycles was observed, the mass loss after different freezing-thawing cycles, the dynamic ultimate tensile strength, peak strain and the relationship of stress-strain under different strain rates were measured. The results showed that relation curve between the mass loss of large aggregate concrete and the freezing-thawing cycles was quadratic. Under the same strain rate, the dynamic ultimate tensile strength and the peak strain decreased withthe increase of freezing-thawing cycles. With the same freezing-thawing cycles and the increase of strain rate, the dynamic ultimate tensile strength increased, while the peak strain decreased. According to the test date, the incremental portion of stress-strain curve was fitted and the failure criterion of large aggregate concrete under dynamic uniaxial tensile stress was established, which could provide the theoretical reference for the design and maintenance of large aggregate structures.","PeriodicalId":52513,"journal":{"name":"Electronic Journal of Structural Engineering","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniaxial Dynamic Tensile Properties of Hydraulic Concrete after Freezing-Thawing Cycles\",\"authors\":\"Haitao Wang, Haoyu Sun, Xinxin Zhuang\",\"doi\":\"10.56748/ejse.182682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, freeze-thaw cycles tests of 0, 25, 50, 75 and 100 times for large aggregate concrete were carried out and uniaxial dynamic tensile tests under the strain rates of 10-5/s, 10-4/s, 10-3/s and 10-2/s were also performed. The damage morphology of the specimens after freezing-thawing cycles was observed, the mass loss after different freezing-thawing cycles, the dynamic ultimate tensile strength, peak strain and the relationship of stress-strain under different strain rates were measured. The results showed that relation curve between the mass loss of large aggregate concrete and the freezing-thawing cycles was quadratic. Under the same strain rate, the dynamic ultimate tensile strength and the peak strain decreased withthe increase of freezing-thawing cycles. With the same freezing-thawing cycles and the increase of strain rate, the dynamic ultimate tensile strength increased, while the peak strain decreased. According to the test date, the incremental portion of stress-strain curve was fitted and the failure criterion of large aggregate concrete under dynamic uniaxial tensile stress was established, which could provide the theoretical reference for the design and maintenance of large aggregate structures.\",\"PeriodicalId\":52513,\"journal\":{\"name\":\"Electronic Journal of Structural Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56748/ejse.182682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56748/ejse.182682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本文对大骨料混凝土进行了0、25、50、75和100次冻融循环试验,并进行了应变率为10-5/s、10-4/s、10-3/s和10-2/s的单轴动态拉伸试验。观察了试样在冻融循环后的损伤形态,测量了不同冻融循环下的质量损失、动态极限抗拉强度、峰值应变以及不同应变速率下的应力-应变关系。结果表明,大骨料混凝土的质量损失与冻融循环次数呈二次曲线关系。在相同应变速率下,动态极限抗拉强度和峰值应变随冻融循环次数的增加而降低。在相同的冻融循环和应变速率的增加下,动态极限抗拉强度增加,峰值应变降低。根据试验数据,拟合了应力-应变曲线的增量部分,建立了大骨料混凝土在动态单轴拉应力作用下的破坏准则,为大骨料结构的设计和维护提供了理论参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniaxial Dynamic Tensile Properties of Hydraulic Concrete after Freezing-Thawing Cycles
In this paper, freeze-thaw cycles tests of 0, 25, 50, 75 and 100 times for large aggregate concrete were carried out and uniaxial dynamic tensile tests under the strain rates of 10-5/s, 10-4/s, 10-3/s and 10-2/s were also performed. The damage morphology of the specimens after freezing-thawing cycles was observed, the mass loss after different freezing-thawing cycles, the dynamic ultimate tensile strength, peak strain and the relationship of stress-strain under different strain rates were measured. The results showed that relation curve between the mass loss of large aggregate concrete and the freezing-thawing cycles was quadratic. Under the same strain rate, the dynamic ultimate tensile strength and the peak strain decreased withthe increase of freezing-thawing cycles. With the same freezing-thawing cycles and the increase of strain rate, the dynamic ultimate tensile strength increased, while the peak strain decreased. According to the test date, the incremental portion of stress-strain curve was fitted and the failure criterion of large aggregate concrete under dynamic uniaxial tensile stress was established, which could provide the theoretical reference for the design and maintenance of large aggregate structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Structural Engineering
Electronic Journal of Structural Engineering Engineering-Civil and Structural Engineering
CiteScore
1.10
自引率
16.70%
发文量
0
期刊介绍: The Electronic Journal of Structural Engineering (EJSE) is an international forum for the dissemination and discussion of leading edge research and practical applications in Structural Engineering. It comprises peer-reviewed technical papers, discussions and comments, and also news about conferences, workshops etc. in Structural Engineering. Original papers are invited from individuals involved in the field of structural engineering and construction. The areas of special interests include the following, but are not limited to: Analytical and design methods Bridges and High-rise Buildings Case studies and failure investigation Innovations in design and new technology New Construction Materials Performance of Structures Prefabrication Technology Repairs, Strengthening, and Maintenance Stability and Scaffolding Engineering Soil-structure interaction Standards and Codes of Practice Structural and solid mechanics Structural Safety and Reliability Testing Technologies Vibration, impact and structural dynamics Wind and earthquake engineering. EJSE is seeking original papers (research or state-of the art reviews) of the highest quality for consideration for publication. The papers will be published within 3 to 6 months. The papers are expected to make a significant contribution to the research and development activities of the academic and professional engineering community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信