无限族非扩张映射和变分不等式的混合方法的强收敛性

IF 0.3 Q4 MATHEMATICS
S. Rathee, Monika Swami
{"title":"无限族非扩张映射和变分不等式的混合方法的强收敛性","authors":"S. Rathee, Monika Swami","doi":"10.22342/JIMS.27.1.955.90-102","DOIUrl":null,"url":null,"abstract":"The motivation behind this paper is to use hybrid method for searching a typical component of the set of fixed point of an infinite family of non expansive mapping and the set of monotone, Lipschtiz continuous variational inequality problem. The contemplated method is combination of two method one is extragradient method and the other one is DQ method. Also, we demonstrate the strong convergence of the designed iterative technique, under some warm conditions.","PeriodicalId":42206,"journal":{"name":"Journal of the Indonesian Mathematical Society","volume":"27 1","pages":"90-102"},"PeriodicalIF":0.3000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Strong Convergence of A Hybrid Method for Infinite Family of Nonexpansive Mapping and Variational Inequality\",\"authors\":\"S. Rathee, Monika Swami\",\"doi\":\"10.22342/JIMS.27.1.955.90-102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The motivation behind this paper is to use hybrid method for searching a typical component of the set of fixed point of an infinite family of non expansive mapping and the set of monotone, Lipschtiz continuous variational inequality problem. The contemplated method is combination of two method one is extragradient method and the other one is DQ method. Also, we demonstrate the strong convergence of the designed iterative technique, under some warm conditions.\",\"PeriodicalId\":42206,\"journal\":{\"name\":\"Journal of the Indonesian Mathematical Society\",\"volume\":\"27 1\",\"pages\":\"90-102\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indonesian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22342/JIMS.27.1.955.90-102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indonesian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22342/JIMS.27.1.955.90-102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文的动机是使用混合方法搜索无限族非扩张映射不动点集和单调Lipschtiz连续变分不等式问题集的一个典型分量。所设想的方法是两种方法的结合,一种是超梯度方法,另一种是DQ方法。此外,我们还证明了所设计的迭代技术在某些温暖条件下的强收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong Convergence of A Hybrid Method for Infinite Family of Nonexpansive Mapping and Variational Inequality
The motivation behind this paper is to use hybrid method for searching a typical component of the set of fixed point of an infinite family of non expansive mapping and the set of monotone, Lipschtiz continuous variational inequality problem. The contemplated method is combination of two method one is extragradient method and the other one is DQ method. Also, we demonstrate the strong convergence of the designed iterative technique, under some warm conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信