一类奇异$ _3f_2 $(1)系的评价

IF 0.8 2区 数学 Q2 MATHEMATICS
Marta Na Chen, W. Chu
{"title":"一类奇异$ _3f_2 $(1)系的评价","authors":"Marta Na Chen, W. Chu","doi":"10.1017/nmj.2022.23","DOIUrl":null,"url":null,"abstract":"Abstract A class of exotic \n$_3F_2(1)$\n -series is examined by integral representations, which enables the authors to present relatively easier proofs for a few remarkable formulae. By means of the linearization method, these \n$_3F_2(1)$\n -series are further extended with two integer parameters. A general summation theorem is explicitly established for these extended series, and several sample summation identities are highlighted as consequences.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"249 1","pages":"107 - 118"},"PeriodicalIF":0.8000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"EVALUATION OF CERTAIN EXOTIC \\n$_3F_2$\\n (1)-SERIES\",\"authors\":\"Marta Na Chen, W. Chu\",\"doi\":\"10.1017/nmj.2022.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A class of exotic \\n$_3F_2(1)$\\n -series is examined by integral representations, which enables the authors to present relatively easier proofs for a few remarkable formulae. By means of the linearization method, these \\n$_3F_2(1)$\\n -series are further extended with two integer parameters. A general summation theorem is explicitly established for these extended series, and several sample summation identities are highlighted as consequences.\",\"PeriodicalId\":49785,\"journal\":{\"name\":\"Nagoya Mathematical Journal\",\"volume\":\"249 1\",\"pages\":\"107 - 118\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nagoya Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2022.23\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2022.23","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文用积分表示法研究了一类奇异的$_3F_2(1)$ -级数,使作者对一些重要的公式给出了相对容易的证明。通过线性化方法,将这些$_3F_2(1)$ -级数进一步扩展为两个整数参数。对于这些扩展级数,明确地建立了一个一般的和定理,并强调了几个示例和恒等式作为结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EVALUATION OF CERTAIN EXOTIC $_3F_2$ (1)-SERIES
Abstract A class of exotic $_3F_2(1)$ -series is examined by integral representations, which enables the authors to present relatively easier proofs for a few remarkable formulae. By means of the linearization method, these $_3F_2(1)$ -series are further extended with two integer parameters. A general summation theorem is explicitly established for these extended series, and several sample summation identities are highlighted as consequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
31
审稿时长
6 months
期刊介绍: The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信