{"title":"随机审查条件下单函数指数模型条件分位数估计的强一致性率","authors":"Nadia Kadiri, A. Rabhi, A. Bouchentouf","doi":"10.1515/demo-2018-0013","DOIUrl":null,"url":null,"abstract":"Abstract The main objective of this paper is to non-parametrically estimate the quantiles of a conditional distribution in the censorship model when the sample is considered as an -mixing sequence. First of all, a kernel type estimator for the conditional cumulative distribution function (cond-cdf) is introduced. Afterwards, we estimate the quantiles by inverting this estimated cond-cdf and state the asymptotic properties when the observations are linked with a single-index structure. The pointwise almost complete convergence and the uniform almost complete convergence (with rate) of the kernel estimate of this model are established. This approach can be applied in time series analysis.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"6 1","pages":"197 - 227"},"PeriodicalIF":0.6000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/demo-2018-0013","citationCount":"4","resultStr":"{\"title\":\"Strong uniform consistency rates of conditional quantile estimation in the single functional index model under random censorship\",\"authors\":\"Nadia Kadiri, A. Rabhi, A. Bouchentouf\",\"doi\":\"10.1515/demo-2018-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The main objective of this paper is to non-parametrically estimate the quantiles of a conditional distribution in the censorship model when the sample is considered as an -mixing sequence. First of all, a kernel type estimator for the conditional cumulative distribution function (cond-cdf) is introduced. Afterwards, we estimate the quantiles by inverting this estimated cond-cdf and state the asymptotic properties when the observations are linked with a single-index structure. The pointwise almost complete convergence and the uniform almost complete convergence (with rate) of the kernel estimate of this model are established. This approach can be applied in time series analysis.\",\"PeriodicalId\":43690,\"journal\":{\"name\":\"Dependence Modeling\",\"volume\":\"6 1\",\"pages\":\"197 - 227\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/demo-2018-0013\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dependence Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/demo-2018-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2018-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Strong uniform consistency rates of conditional quantile estimation in the single functional index model under random censorship
Abstract The main objective of this paper is to non-parametrically estimate the quantiles of a conditional distribution in the censorship model when the sample is considered as an -mixing sequence. First of all, a kernel type estimator for the conditional cumulative distribution function (cond-cdf) is introduced. Afterwards, we estimate the quantiles by inverting this estimated cond-cdf and state the asymptotic properties when the observations are linked with a single-index structure. The pointwise almost complete convergence and the uniform almost complete convergence (with rate) of the kernel estimate of this model are established. This approach can be applied in time series analysis.
期刊介绍:
The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to): -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations