{"title":"随机微分方程模型的收获优化:最优是好的敌人吗?","authors":"N. Brites, C. Braumann","doi":"10.1080/15326349.2021.2006066","DOIUrl":null,"url":null,"abstract":"Abstract We can describe the size evolution of a harvested population in a randomly varying environment using stochastic differential equations. Previously, we have compared the profit performance of four harvesting policies: (i) optimal variable effort policy, based on variable effort; (ii) optimal penalized variable effort policies, penalized versions based on including an artificial running energy cost on the effort; (iii) stepwise policies, staircase versions where the harvesting effort is determined at the beginning of each year (or of each biennium) and kept constant throughout that year (or biennium); (iv) constant harvesting effort sustainable policy, based on constant effort. They have different properties, so it is also worth looking at combinations of such policies and studying the single and cross-effects of the amount of penalization, the absence or presence and type of steps, and the restraints on minimum and maximum allowed efforts. Using data based on a real harvested population and considering a logistic growth model, we perform such a comparison study of pure and mixed policies in terms of profit, applicability, and other relevant properties. We end up answering the question: is the optimal enemy of the good?","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Harvesting optimization with stochastic differential equations models: is the optimal enemy of the good?\",\"authors\":\"N. Brites, C. Braumann\",\"doi\":\"10.1080/15326349.2021.2006066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We can describe the size evolution of a harvested population in a randomly varying environment using stochastic differential equations. Previously, we have compared the profit performance of four harvesting policies: (i) optimal variable effort policy, based on variable effort; (ii) optimal penalized variable effort policies, penalized versions based on including an artificial running energy cost on the effort; (iii) stepwise policies, staircase versions where the harvesting effort is determined at the beginning of each year (or of each biennium) and kept constant throughout that year (or biennium); (iv) constant harvesting effort sustainable policy, based on constant effort. They have different properties, so it is also worth looking at combinations of such policies and studying the single and cross-effects of the amount of penalization, the absence or presence and type of steps, and the restraints on minimum and maximum allowed efforts. Using data based on a real harvested population and considering a logistic growth model, we perform such a comparison study of pure and mixed policies in terms of profit, applicability, and other relevant properties. We end up answering the question: is the optimal enemy of the good?\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/15326349.2021.2006066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/15326349.2021.2006066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Harvesting optimization with stochastic differential equations models: is the optimal enemy of the good?
Abstract We can describe the size evolution of a harvested population in a randomly varying environment using stochastic differential equations. Previously, we have compared the profit performance of four harvesting policies: (i) optimal variable effort policy, based on variable effort; (ii) optimal penalized variable effort policies, penalized versions based on including an artificial running energy cost on the effort; (iii) stepwise policies, staircase versions where the harvesting effort is determined at the beginning of each year (or of each biennium) and kept constant throughout that year (or biennium); (iv) constant harvesting effort sustainable policy, based on constant effort. They have different properties, so it is also worth looking at combinations of such policies and studying the single and cross-effects of the amount of penalization, the absence or presence and type of steps, and the restraints on minimum and maximum allowed efforts. Using data based on a real harvested population and considering a logistic growth model, we perform such a comparison study of pure and mixed policies in terms of profit, applicability, and other relevant properties. We end up answering the question: is the optimal enemy of the good?