{"title":"基于YOLOv3多模态数据融合的行人检测","authors":"Cheng Wang, Y. Liu, Fei-xiang Chang, Ming Lu","doi":"10.1080/21642583.2022.2129507","DOIUrl":null,"url":null,"abstract":"Multi-sensor fusion has essential applications in the field of target detection. Considering the current actual demand for miniaturization of on-board computers for driverless vehicles, this paper uses the multimodal data YOLOv3 (MDY) algorithm for pedestrian detection on embedded devices. The MDY algorithm uses YOLOv3 as the basic framework to improve pedestrian detection accuracy by optimizing anchor frames and adding small target detection branches. Then the algorithm is accelerated by using TensorRT technology to improve the real-time performance in embedded devices. Finally, a hybrid fusion framework is used to fuse the LIDAR point cloud data with the improved YOLOv3 algorithm to compensate for the shortcomings of a single sensor and improve the detection accuracy while ensuring speed. The improved YOLOv3 improves AP by 6.4% and speed by 11.3 FPS over the original algorithm. The MDY algorithm achieves better performance on the KITTI dataset. To further verify the feasibility of the MDY algorithm, an actual test was conducted on an unmanned vehicle with Jetson TX2 embedded device as the on-board computer within the campus scenario, and the results showed that the MDY algorithm achieves 90.8% accuracy under real-time operation and can achieve adequate detection accuracy and real-time performance on the embedded device.","PeriodicalId":46282,"journal":{"name":"Systems Science & Control Engineering","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Pedestrian detection based on YOLOv3 multimodal data fusion\",\"authors\":\"Cheng Wang, Y. Liu, Fei-xiang Chang, Ming Lu\",\"doi\":\"10.1080/21642583.2022.2129507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-sensor fusion has essential applications in the field of target detection. Considering the current actual demand for miniaturization of on-board computers for driverless vehicles, this paper uses the multimodal data YOLOv3 (MDY) algorithm for pedestrian detection on embedded devices. The MDY algorithm uses YOLOv3 as the basic framework to improve pedestrian detection accuracy by optimizing anchor frames and adding small target detection branches. Then the algorithm is accelerated by using TensorRT technology to improve the real-time performance in embedded devices. Finally, a hybrid fusion framework is used to fuse the LIDAR point cloud data with the improved YOLOv3 algorithm to compensate for the shortcomings of a single sensor and improve the detection accuracy while ensuring speed. The improved YOLOv3 improves AP by 6.4% and speed by 11.3 FPS over the original algorithm. The MDY algorithm achieves better performance on the KITTI dataset. To further verify the feasibility of the MDY algorithm, an actual test was conducted on an unmanned vehicle with Jetson TX2 embedded device as the on-board computer within the campus scenario, and the results showed that the MDY algorithm achieves 90.8% accuracy under real-time operation and can achieve adequate detection accuracy and real-time performance on the embedded device.\",\"PeriodicalId\":46282,\"journal\":{\"name\":\"Systems Science & Control Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Science & Control Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21642583.2022.2129507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2022.2129507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Pedestrian detection based on YOLOv3 multimodal data fusion
Multi-sensor fusion has essential applications in the field of target detection. Considering the current actual demand for miniaturization of on-board computers for driverless vehicles, this paper uses the multimodal data YOLOv3 (MDY) algorithm for pedestrian detection on embedded devices. The MDY algorithm uses YOLOv3 as the basic framework to improve pedestrian detection accuracy by optimizing anchor frames and adding small target detection branches. Then the algorithm is accelerated by using TensorRT technology to improve the real-time performance in embedded devices. Finally, a hybrid fusion framework is used to fuse the LIDAR point cloud data with the improved YOLOv3 algorithm to compensate for the shortcomings of a single sensor and improve the detection accuracy while ensuring speed. The improved YOLOv3 improves AP by 6.4% and speed by 11.3 FPS over the original algorithm. The MDY algorithm achieves better performance on the KITTI dataset. To further verify the feasibility of the MDY algorithm, an actual test was conducted on an unmanned vehicle with Jetson TX2 embedded device as the on-board computer within the campus scenario, and the results showed that the MDY algorithm achieves 90.8% accuracy under real-time operation and can achieve adequate detection accuracy and real-time performance on the embedded device.
期刊介绍:
Systems Science & Control Engineering is a world-leading fully open access journal covering all areas of theoretical and applied systems science and control engineering. The journal encourages the submission of original articles, reviews and short communications in areas including, but not limited to: · artificial intelligence · complex systems · complex networks · control theory · control applications · cybernetics · dynamical systems theory · operations research · systems biology · systems dynamics · systems ecology · systems engineering · systems psychology · systems theory