J. Werner, Lukas Vetter, Sebastian Hertle, M. Wolf, D. Drummer
{"title":"聚合物熔体中的空气夹杂物作为固有的物理发泡剂,在旋转成型中产生泡沫","authors":"J. Werner, Lukas Vetter, Sebastian Hertle, M. Wolf, D. Drummer","doi":"10.1177/0262489320920070","DOIUrl":null,"url":null,"abstract":"In recent years, foams have experienced a major economic uprise, not least due to their lightweight construction potential. In this article, a new process variation is presented, which enables the generation of foamed structures in rotational molding by the utilization of vacuum. The novel method is based on entrapped air in the melt as an intrinsic physical blowing agent. By applying negative pressure in the cooling or solidification phase, the air bubbles expand. The crystallization freezes the existing conditions and thus forms the foamed structure. The investigations presented consider influences by different pressures as well as the temperature at which the vacuum is applied. The results with polyethylene show that by varying the pressure as well as the application temperature of the vacuum, components with different densities and cell characteristics result. The resulting foamed components excel by an improved stiffness per unit weight ratio.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":"40 1","pages":"3 - 19"},"PeriodicalIF":1.3000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0262489320920070","citationCount":"2","resultStr":"{\"title\":\"Air inclusions in the polymer melt functioning as intrinsic physical blowing agents for the generation of foams in rotational molding\",\"authors\":\"J. Werner, Lukas Vetter, Sebastian Hertle, M. Wolf, D. Drummer\",\"doi\":\"10.1177/0262489320920070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, foams have experienced a major economic uprise, not least due to their lightweight construction potential. In this article, a new process variation is presented, which enables the generation of foamed structures in rotational molding by the utilization of vacuum. The novel method is based on entrapped air in the melt as an intrinsic physical blowing agent. By applying negative pressure in the cooling or solidification phase, the air bubbles expand. The crystallization freezes the existing conditions and thus forms the foamed structure. The investigations presented consider influences by different pressures as well as the temperature at which the vacuum is applied. The results with polyethylene show that by varying the pressure as well as the application temperature of the vacuum, components with different densities and cell characteristics result. The resulting foamed components excel by an improved stiffness per unit weight ratio.\",\"PeriodicalId\":9816,\"journal\":{\"name\":\"Cellular Polymers\",\"volume\":\"40 1\",\"pages\":\"3 - 19\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0262489320920070\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/0262489320920070\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0262489320920070","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Air inclusions in the polymer melt functioning as intrinsic physical blowing agents for the generation of foams in rotational molding
In recent years, foams have experienced a major economic uprise, not least due to their lightweight construction potential. In this article, a new process variation is presented, which enables the generation of foamed structures in rotational molding by the utilization of vacuum. The novel method is based on entrapped air in the melt as an intrinsic physical blowing agent. By applying negative pressure in the cooling or solidification phase, the air bubbles expand. The crystallization freezes the existing conditions and thus forms the foamed structure. The investigations presented consider influences by different pressures as well as the temperature at which the vacuum is applied. The results with polyethylene show that by varying the pressure as well as the application temperature of the vacuum, components with different densities and cell characteristics result. The resulting foamed components excel by an improved stiffness per unit weight ratio.
期刊介绍:
Cellular Polymers is concerned primarily with the science of foamed materials, the technology and state of the art for processing and fabricating, the engineering techniques and principles of the machines used to produce them economically, and their applications in varied and wide ranging uses where they are making an increasingly valuable contribution.
Potential problems for the industry are also covered, including fire performance of materials, CFC-replacement technology, recycling and environmental legislation. Reviews of technical and commercial advances in the manufacturing and application technologies are also included.
Cellular Polymers covers these and other related topics and also pays particular attention to the ways in which the science and technology of cellular polymers is being developed throughout the world.