高粘度液体的按需滴涂

IF 2.8 Q2 MECHANICS
K. Kamamoto, H. Onuki, Y. Tagawa
{"title":"高粘度液体的按需滴涂","authors":"K. Kamamoto, H. Onuki, Y. Tagawa","doi":"10.1017/flo.2021.7","DOIUrl":null,"url":null,"abstract":"Graphical Abstract An on-demand painting system with a simple structure device that ejects highly viscous liquids as microjets is introduced. An impulsive motion of the container results in the ejection of a viscous liquid jet from the nozzle. This system enabled us to paint letters on a section of a car body using commercial car paint with a zero-shear viscosity of 100 $\\textrm {Pa} \\cdot \\textrm {s}$. To understand the jet velocity, we conducted systematic experiments. Experimental results showed that the jet velocity increases with the ratio between the liquid depths in the container and the nozzle, up to approximately 30 times faster than the initial velocity. However, a linear relation between the jet velocity and the ratio predicted by the previous model, which considers only the pressure impulse, does not hold for the high length ratios since the actual position of the stagnation point is different from the position predicted by the previous model. By solving the Laplace equation and using the model proposed by Gordillo et al. (J. Fluid Mech., vol. 894, 2020, pp. A3–11), we reproduce the non-monotonic behaviour of the jet velocity as a function of the length ratio. For practical use, we improve the jet-velocity model by considering mass conservation as well as the pressure impulse.","PeriodicalId":93752,"journal":{"name":"Flow (Cambridge, England)","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Drop-on-demand painting of highly viscous liquids\",\"authors\":\"K. Kamamoto, H. Onuki, Y. Tagawa\",\"doi\":\"10.1017/flo.2021.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphical Abstract An on-demand painting system with a simple structure device that ejects highly viscous liquids as microjets is introduced. An impulsive motion of the container results in the ejection of a viscous liquid jet from the nozzle. This system enabled us to paint letters on a section of a car body using commercial car paint with a zero-shear viscosity of 100 $\\\\textrm {Pa} \\\\cdot \\\\textrm {s}$. To understand the jet velocity, we conducted systematic experiments. Experimental results showed that the jet velocity increases with the ratio between the liquid depths in the container and the nozzle, up to approximately 30 times faster than the initial velocity. However, a linear relation between the jet velocity and the ratio predicted by the previous model, which considers only the pressure impulse, does not hold for the high length ratios since the actual position of the stagnation point is different from the position predicted by the previous model. By solving the Laplace equation and using the model proposed by Gordillo et al. (J. Fluid Mech., vol. 894, 2020, pp. A3–11), we reproduce the non-monotonic behaviour of the jet velocity as a function of the length ratio. For practical use, we improve the jet-velocity model by considering mass conservation as well as the pressure impulse.\",\"PeriodicalId\":93752,\"journal\":{\"name\":\"Flow (Cambridge, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2021-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow (Cambridge, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/flo.2021.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow (Cambridge, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/flo.2021.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 3

摘要

图形摘要介绍了一种具有简单结构装置的按需绘画系统,该系统以微射流的形式喷出高粘性液体。容器的脉冲运动导致粘性液体射流从喷嘴喷出。该系统使我们能够使用零剪切粘度为100$\textrm{Pa}\cdot\textrm}$的商用车漆在车身的一部分上绘制字母。为了了解射流速度,我们进行了系统的实验。实验结果表明,射流速度随着容器和喷嘴中液体深度之比的增加而增加,比初始速度快约30倍。然而,由于驻点的实际位置与先前模型预测的位置不同,因此仅考虑压力脉冲的射流速度与先前模型所预测的比率之间的线性关系对于高长度比率不成立。通过求解拉普拉斯方程并使用Gordillo等人提出的模型(J.Fluid Mech.,vol.8942020,pp.A3-11),我们再现了射流速度作为长度比函数的非单调行为。在实际应用中,我们通过考虑质量守恒和压力脉冲来改进射流速度模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Drop-on-demand painting of highly viscous liquids
Graphical Abstract An on-demand painting system with a simple structure device that ejects highly viscous liquids as microjets is introduced. An impulsive motion of the container results in the ejection of a viscous liquid jet from the nozzle. This system enabled us to paint letters on a section of a car body using commercial car paint with a zero-shear viscosity of 100 $\textrm {Pa} \cdot \textrm {s}$. To understand the jet velocity, we conducted systematic experiments. Experimental results showed that the jet velocity increases with the ratio between the liquid depths in the container and the nozzle, up to approximately 30 times faster than the initial velocity. However, a linear relation between the jet velocity and the ratio predicted by the previous model, which considers only the pressure impulse, does not hold for the high length ratios since the actual position of the stagnation point is different from the position predicted by the previous model. By solving the Laplace equation and using the model proposed by Gordillo et al. (J. Fluid Mech., vol. 894, 2020, pp. A3–11), we reproduce the non-monotonic behaviour of the jet velocity as a function of the length ratio. For practical use, we improve the jet-velocity model by considering mass conservation as well as the pressure impulse.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信