Tongfei Cheng, Jinxing Cao, Xiaohong Jiang, M. Yarmolenko, A. Rogachev, A. Rogachev
{"title":"低能电子束沉积Icaritin薄膜的研究","authors":"Tongfei Cheng, Jinxing Cao, Xiaohong Jiang, M. Yarmolenko, A. Rogachev, A. Rogachev","doi":"10.18321/ectj1077","DOIUrl":null,"url":null,"abstract":"In this paper, icaritin film was prepared by low-energy beam electron beam deposition (EBD). The material test showed that the structure and composition of icaritin were not changed after electron beam deposition. Then, the film was sliced and immersed in simulated body fluids, it can be seen that the film was released quickly in the first 7 days. With the extension of soaking time, the release rate gradually slowed down, and the release amount exceeded 90% in about 20 days. In vitro cytotoxicity test showed that the relative cell viability rate of the film was still 92.32±1.30% (p<0.05), indicating that the film possessed excellent cytocompatibility.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study of Icaritin Films by Low-Energy Electron Beam Deposition\",\"authors\":\"Tongfei Cheng, Jinxing Cao, Xiaohong Jiang, M. Yarmolenko, A. Rogachev, A. Rogachev\",\"doi\":\"10.18321/ectj1077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, icaritin film was prepared by low-energy beam electron beam deposition (EBD). The material test showed that the structure and composition of icaritin were not changed after electron beam deposition. Then, the film was sliced and immersed in simulated body fluids, it can be seen that the film was released quickly in the first 7 days. With the extension of soaking time, the release rate gradually slowed down, and the release amount exceeded 90% in about 20 days. In vitro cytotoxicity test showed that the relative cell viability rate of the film was still 92.32±1.30% (p<0.05), indicating that the film possessed excellent cytocompatibility.\",\"PeriodicalId\":11795,\"journal\":{\"name\":\"Eurasian Chemico-Technological Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasian Chemico-Technological Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18321/ectj1077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Chemico-Technological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18321/ectj1077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Study of Icaritin Films by Low-Energy Electron Beam Deposition
In this paper, icaritin film was prepared by low-energy beam electron beam deposition (EBD). The material test showed that the structure and composition of icaritin were not changed after electron beam deposition. Then, the film was sliced and immersed in simulated body fluids, it can be seen that the film was released quickly in the first 7 days. With the extension of soaking time, the release rate gradually slowed down, and the release amount exceeded 90% in about 20 days. In vitro cytotoxicity test showed that the relative cell viability rate of the film was still 92.32±1.30% (p<0.05), indicating that the film possessed excellent cytocompatibility.
期刊介绍:
The journal is designed for publication of experimental and theoretical investigation results in the field of chemistry and chemical technology. Among priority fields that emphasized by chemical science are as follows: advanced materials and chemical technologies, current issues of organic synthesis and chemistry of natural compounds, physical chemistry, chemical physics, electro-photo-radiative-plasma chemistry, colloids, nanotechnologies, catalysis and surface-active materials, polymers, biochemistry.