使用机器学习将纹理定律的掩模应用于图像

Q2 Computer Science
G. Abdikerimova, M. Yessenova, A.Ye. Yerzhanova, Zhanat Manbetova, G. Murzabekova, D. Kaibassova, Roza Bekbayeva, Madina Aldashova
{"title":"使用机器学习将纹理定律的掩模应用于图像","authors":"G. Abdikerimova, M. Yessenova, A.Ye. Yerzhanova, Zhanat Manbetova, G. Murzabekova, D. Kaibassova, Roza Bekbayeva, Madina Aldashova","doi":"10.11591/ijece.v13i5.pp5569-5575","DOIUrl":null,"url":null,"abstract":"Currently, artificial neural networks are experiencing a rebirth, which is primarily due to the increase in the computing power of modern computers and the emergence of very large training data sets available in global networks. The article considers Laws texture masks as weights for a machine-learning algorithm for clustering aerospace images. The use of Laws texture masks in machine learning can help in the analysis of the textural characteristics of objects in the image, which are further identified as pockets of weeds. When solving problems in applied areas, in particular in the field of agriculture, there are often problems associated with small sample sizes of images obtained from aerospace and unmanned aerial vehicles and insufficient quality of the source material for training. This determines the relevance of research and development of new methods and algorithms for classifying crop damage. The purpose of the work is to use the method of texture masks of Laws in machine learning for automated processing of high-resolution images in the case of small samples using the example of problems of segmentation and classification of the nature of damage to crops.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Applying textural Law’s masks to images using machine learning\",\"authors\":\"G. Abdikerimova, M. Yessenova, A.Ye. Yerzhanova, Zhanat Manbetova, G. Murzabekova, D. Kaibassova, Roza Bekbayeva, Madina Aldashova\",\"doi\":\"10.11591/ijece.v13i5.pp5569-5575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, artificial neural networks are experiencing a rebirth, which is primarily due to the increase in the computing power of modern computers and the emergence of very large training data sets available in global networks. The article considers Laws texture masks as weights for a machine-learning algorithm for clustering aerospace images. The use of Laws texture masks in machine learning can help in the analysis of the textural characteristics of objects in the image, which are further identified as pockets of weeds. When solving problems in applied areas, in particular in the field of agriculture, there are often problems associated with small sample sizes of images obtained from aerospace and unmanned aerial vehicles and insufficient quality of the source material for training. This determines the relevance of research and development of new methods and algorithms for classifying crop damage. The purpose of the work is to use the method of texture masks of Laws in machine learning for automated processing of high-resolution images in the case of small samples using the example of problems of segmentation and classification of the nature of damage to crops.\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp5569-5575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5569-5575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

目前,人工神经网络正在经历重生,这主要是由于现代计算机计算能力的提高以及全球网络中出现了非常大的训练数据集。本文将Laws纹理掩模视为用于航空航天图像聚类的机器学习算法的权重。在机器学习中使用Laws纹理掩模可以帮助分析图像中物体的纹理特征,这些物体被进一步识别为杂草袋。在解决应用领域,特别是农业领域的问题时,经常会出现从航空航天和无人机获得的图像样本量小以及训练源材料质量不足的问题。这决定了研究和开发新的作物损伤分类方法和算法的相关性。这项工作的目的是利用机器学习中的纹理掩模方法,在小样本的情况下,以作物损伤性质的分割和分类问题为例,自动处理高分辨率图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying textural Law’s masks to images using machine learning
Currently, artificial neural networks are experiencing a rebirth, which is primarily due to the increase in the computing power of modern computers and the emergence of very large training data sets available in global networks. The article considers Laws texture masks as weights for a machine-learning algorithm for clustering aerospace images. The use of Laws texture masks in machine learning can help in the analysis of the textural characteristics of objects in the image, which are further identified as pockets of weeds. When solving problems in applied areas, in particular in the field of agriculture, there are often problems associated with small sample sizes of images obtained from aerospace and unmanned aerial vehicles and insufficient quality of the source material for training. This determines the relevance of research and development of new methods and algorithms for classifying crop damage. The purpose of the work is to use the method of texture masks of Laws in machine learning for automated processing of high-resolution images in the case of small samples using the example of problems of segmentation and classification of the nature of damage to crops.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering Computer Science-Computer Science (all)
CiteScore
4.10
自引率
0.00%
发文量
177
期刊介绍: International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信