基于多群体潜在阶级分析的社会网络影响建模

IF 1.3 4区 社会学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Ankita Dey, Diganta Mukherjee, Sugata Sen Roy
{"title":"基于多群体潜在阶级分析的社会网络影响建模","authors":"Ankita Dey, Diganta Mukherjee, Sugata Sen Roy","doi":"10.1080/0022250X.2020.1821199","DOIUrl":null,"url":null,"abstract":"ABSTRACT Presence of social network among the respondents in a survey may have an influence on the patterns of response. Latent class analysis identifies hidden subgroups in the respondents in a survey and simplifies the structure of heterogeneity amongst them. In the present study, a new model of social network-informed multiple group latent class analysis is developed by introducing a parameter measuring the influence of a social network on a respondent. For suitable application of the proposed model, data from 75 Indian villages with detailed demographic characteristics and a diverse social and economic network are used. The present study examined the methodological aspect of the proposed model of multiple group latent class analysis adjusted for the impact of social network.","PeriodicalId":50139,"journal":{"name":"Journal of Mathematical Sociology","volume":"46 1","pages":"99 - 119"},"PeriodicalIF":1.3000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/0022250X.2020.1821199","citationCount":"0","resultStr":"{\"title\":\"Modelling the influence of social network with a multiple group latent class analysis\",\"authors\":\"Ankita Dey, Diganta Mukherjee, Sugata Sen Roy\",\"doi\":\"10.1080/0022250X.2020.1821199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Presence of social network among the respondents in a survey may have an influence on the patterns of response. Latent class analysis identifies hidden subgroups in the respondents in a survey and simplifies the structure of heterogeneity amongst them. In the present study, a new model of social network-informed multiple group latent class analysis is developed by introducing a parameter measuring the influence of a social network on a respondent. For suitable application of the proposed model, data from 75 Indian villages with detailed demographic characteristics and a diverse social and economic network are used. The present study examined the methodological aspect of the proposed model of multiple group latent class analysis adjusted for the impact of social network.\",\"PeriodicalId\":50139,\"journal\":{\"name\":\"Journal of Mathematical Sociology\",\"volume\":\"46 1\",\"pages\":\"99 - 119\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/0022250X.2020.1821199\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Sociology\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1080/0022250X.2020.1821199\",\"RegionNum\":4,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Sociology","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1080/0022250X.2020.1821199","RegionNum":4,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

摘要调查中受访者之间的社交网络可能会对反应模式产生影响。潜在类别分析在调查中识别出受访者中隐藏的亚组,并简化了他们之间的异质性结构。在本研究中,通过引入一个衡量社交网络对受访者影响的参数,开发了一个新的基于社交网络的多群体潜在类别分析模型。为了适当应用所提出的模型,使用了来自75个印度村庄的数据,这些村庄具有详细的人口特征和多样化的社会和经济网络。本研究考察了所提出的多群体潜在阶级分析模型的方法论方面,该模型根据社会网络的影响进行了调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling the influence of social network with a multiple group latent class analysis
ABSTRACT Presence of social network among the respondents in a survey may have an influence on the patterns of response. Latent class analysis identifies hidden subgroups in the respondents in a survey and simplifies the structure of heterogeneity amongst them. In the present study, a new model of social network-informed multiple group latent class analysis is developed by introducing a parameter measuring the influence of a social network on a respondent. For suitable application of the proposed model, data from 75 Indian villages with detailed demographic characteristics and a diverse social and economic network are used. The present study examined the methodological aspect of the proposed model of multiple group latent class analysis adjusted for the impact of social network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Sociology
Journal of Mathematical Sociology 数学-数学跨学科应用
CiteScore
2.90
自引率
10.00%
发文量
5
审稿时长
>12 weeks
期刊介绍: The goal of the Journal of Mathematical Sociology is to publish models and mathematical techniques that would likely be useful to professional sociologists. The Journal also welcomes papers of mutual interest to social scientists and other social and behavioral scientists, as well as papers by non-social scientists that may encourage fruitful connections between sociology and other disciplines. Reviews of new or developing areas of mathematics and mathematical modeling that may have significant applications in sociology will also be considered. The Journal of Mathematical Sociology is published in association with the International Network for Social Network Analysis, the Japanese Association for Mathematical Sociology, the Mathematical Sociology Section of the American Sociological Association, and the Methodology Section of the American Sociological Association.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信