{"title":"正则子群,幂零代数和射影同余矩阵","authors":"M. Pellegrini","doi":"10.22108/IJGT.2017.21215","DOIUrl":null,"url":null,"abstract":"In this paper we highlight the connection between certain classes of regular subgroups of the affine group $AGL_n(F)$, $F$ a field, and associative nilpotent $F$-algebras of dimension $n$. We also describe how the classification of projective congruence classes of square matrices is equivalent to the classification of regular subgroups of particular shape.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2017-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Regular subgroups, nilpotent algebras and projectively congruent matrices\",\"authors\":\"M. Pellegrini\",\"doi\":\"10.22108/IJGT.2017.21215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we highlight the connection between certain classes of regular subgroups of the affine group $AGL_n(F)$, $F$ a field, and associative nilpotent $F$-algebras of dimension $n$. We also describe how the classification of projective congruence classes of square matrices is equivalent to the classification of regular subgroups of particular shape.\",\"PeriodicalId\":43007,\"journal\":{\"name\":\"International Journal of Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2017-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/IJGT.2017.21215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2017.21215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Regular subgroups, nilpotent algebras and projectively congruent matrices
In this paper we highlight the connection between certain classes of regular subgroups of the affine group $AGL_n(F)$, $F$ a field, and associative nilpotent $F$-algebras of dimension $n$. We also describe how the classification of projective congruence classes of square matrices is equivalent to the classification of regular subgroups of particular shape.
期刊介绍:
International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.