R. McEachran, Francisco J. Blanco, G. García, M. Brunger
{"title":"电子-铍散射的相对论复光学势计算:推荐截面","authors":"R. McEachran, Francisco J. Blanco, G. García, M. Brunger","doi":"10.1063/1.5047139","DOIUrl":null,"url":null,"abstract":"We report results from the application of the relativistic complex optical potential (ROP) method to electron–beryllium scattering. The energy range of this study was 0–5000 eV, with the results for the integral elastic cross sections, momentum transfer cross sections, summed discrete electronic-state excitation integral cross sections, and total ionisation cross sections (TICSs) being reported. However we will largely focus our discussion here on the TICS, due to its importance in simulating the plasma action on beryllium (Be) in the international thermonuclear reactor. The current level of agreement between the various theoretical approaches to calculating the TICS is well summarised in the work of Maihom et al. [Eur. Phys. J. D 67, 2 (2013)] and Blanco et al. [Plasma Sources Sci. Technol. 26, 085004 (2017)], with the level of accord between them being quite marginal. As a consequence, we revisit this problem with improved scattering potentials over those employed in the work of Blanco et al. In addition, we present results from an application of the binary-encounter-Bethe theory for the electron–Be TICS. We find a quite significant improvement in the level of agreement between the TICS from our new ROP calculation and the earlier B-spline R-matrix and convergent close coupling results [O. Zatsarinny et al., J. Phys. B: At., Mol. Opt. Phys. 49, 235701 (2016)], compared to that reported in the work of Blanco et al. As a result of this improved level of accord, we propose here a recommended TICS for e+Be scattering, as well as for the elastic integral and summed electronic-state excitation cross sections, which also incorporates uncertainty estimates for their validity.We report results from the application of the relativistic complex optical potential (ROP) method to electron–beryllium scattering. The energy range of this study was 0–5000 eV, with the results for the integral elastic cross sections, momentum transfer cross sections, summed discrete electronic-state excitation integral cross sections, and total ionisation cross sections (TICSs) being reported. However we will largely focus our discussion here on the TICS, due to its importance in simulating the plasma action on beryllium (Be) in the international thermonuclear reactor. The current level of agreement between the various theoretical approaches to calculating the TICS is well summarised in the work of Maihom et al. [Eur. Phys. J. D 67, 2 (2013)] and Blanco et al. [Plasma Sources Sci. Technol. 26, 085004 (2017)], with the level of accord between them being quite marginal. As a consequence, we revi...","PeriodicalId":16783,"journal":{"name":"Journal of Physical and Chemical Reference Data","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.5047139","citationCount":"12","resultStr":"{\"title\":\"A Relativistic Complex Optical Potential Calculation for Electron–Beryllium Scattering: Recommended Cross Sections\",\"authors\":\"R. McEachran, Francisco J. Blanco, G. García, M. Brunger\",\"doi\":\"10.1063/1.5047139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report results from the application of the relativistic complex optical potential (ROP) method to electron–beryllium scattering. The energy range of this study was 0–5000 eV, with the results for the integral elastic cross sections, momentum transfer cross sections, summed discrete electronic-state excitation integral cross sections, and total ionisation cross sections (TICSs) being reported. However we will largely focus our discussion here on the TICS, due to its importance in simulating the plasma action on beryllium (Be) in the international thermonuclear reactor. The current level of agreement between the various theoretical approaches to calculating the TICS is well summarised in the work of Maihom et al. [Eur. Phys. J. D 67, 2 (2013)] and Blanco et al. [Plasma Sources Sci. Technol. 26, 085004 (2017)], with the level of accord between them being quite marginal. As a consequence, we revisit this problem with improved scattering potentials over those employed in the work of Blanco et al. In addition, we present results from an application of the binary-encounter-Bethe theory for the electron–Be TICS. We find a quite significant improvement in the level of agreement between the TICS from our new ROP calculation and the earlier B-spline R-matrix and convergent close coupling results [O. Zatsarinny et al., J. Phys. B: At., Mol. Opt. Phys. 49, 235701 (2016)], compared to that reported in the work of Blanco et al. As a result of this improved level of accord, we propose here a recommended TICS for e+Be scattering, as well as for the elastic integral and summed electronic-state excitation cross sections, which also incorporates uncertainty estimates for their validity.We report results from the application of the relativistic complex optical potential (ROP) method to electron–beryllium scattering. The energy range of this study was 0–5000 eV, with the results for the integral elastic cross sections, momentum transfer cross sections, summed discrete electronic-state excitation integral cross sections, and total ionisation cross sections (TICSs) being reported. However we will largely focus our discussion here on the TICS, due to its importance in simulating the plasma action on beryllium (Be) in the international thermonuclear reactor. The current level of agreement between the various theoretical approaches to calculating the TICS is well summarised in the work of Maihom et al. [Eur. Phys. J. D 67, 2 (2013)] and Blanco et al. [Plasma Sources Sci. Technol. 26, 085004 (2017)], with the level of accord between them being quite marginal. As a consequence, we revi...\",\"PeriodicalId\":16783,\"journal\":{\"name\":\"Journal of Physical and Chemical Reference Data\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1063/1.5047139\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physical and Chemical Reference Data\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5047139\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical and Chemical Reference Data","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/1.5047139","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Relativistic Complex Optical Potential Calculation for Electron–Beryllium Scattering: Recommended Cross Sections
We report results from the application of the relativistic complex optical potential (ROP) method to electron–beryllium scattering. The energy range of this study was 0–5000 eV, with the results for the integral elastic cross sections, momentum transfer cross sections, summed discrete electronic-state excitation integral cross sections, and total ionisation cross sections (TICSs) being reported. However we will largely focus our discussion here on the TICS, due to its importance in simulating the plasma action on beryllium (Be) in the international thermonuclear reactor. The current level of agreement between the various theoretical approaches to calculating the TICS is well summarised in the work of Maihom et al. [Eur. Phys. J. D 67, 2 (2013)] and Blanco et al. [Plasma Sources Sci. Technol. 26, 085004 (2017)], with the level of accord between them being quite marginal. As a consequence, we revisit this problem with improved scattering potentials over those employed in the work of Blanco et al. In addition, we present results from an application of the binary-encounter-Bethe theory for the electron–Be TICS. We find a quite significant improvement in the level of agreement between the TICS from our new ROP calculation and the earlier B-spline R-matrix and convergent close coupling results [O. Zatsarinny et al., J. Phys. B: At., Mol. Opt. Phys. 49, 235701 (2016)], compared to that reported in the work of Blanco et al. As a result of this improved level of accord, we propose here a recommended TICS for e+Be scattering, as well as for the elastic integral and summed electronic-state excitation cross sections, which also incorporates uncertainty estimates for their validity.We report results from the application of the relativistic complex optical potential (ROP) method to electron–beryllium scattering. The energy range of this study was 0–5000 eV, with the results for the integral elastic cross sections, momentum transfer cross sections, summed discrete electronic-state excitation integral cross sections, and total ionisation cross sections (TICSs) being reported. However we will largely focus our discussion here on the TICS, due to its importance in simulating the plasma action on beryllium (Be) in the international thermonuclear reactor. The current level of agreement between the various theoretical approaches to calculating the TICS is well summarised in the work of Maihom et al. [Eur. Phys. J. D 67, 2 (2013)] and Blanco et al. [Plasma Sources Sci. Technol. 26, 085004 (2017)], with the level of accord between them being quite marginal. As a consequence, we revi...
期刊介绍:
The Journal of Physical and Chemical Reference Data (JPCRD) is published by AIP Publishing for the U.S. Department of Commerce National Institute of Standards and Technology (NIST). The journal provides critically evaluated physical and chemical property data, fully documented as to the original sources and the criteria used for evaluation, preferably with uncertainty analysis. Critical reviews may also be included if they document a reference database, review the data situation in a field, review reference-quality measurement techniques, or review data evaluation methods.