哪些矩形集合有完美的包装?

IF 3.7 4区 管理学 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Florian Braam , Daan van den Berg
{"title":"哪些矩形集合有完美的包装?","authors":"Florian Braam ,&nbsp;Daan van den Berg","doi":"10.1016/j.orp.2021.100211","DOIUrl":null,"url":null,"abstract":"<div><p>In the perfect rectangle packing problem, a set of rectangular items have to be placed inside a rectangular container without overlap or empty space. In this paper, we generate a large number of random instances and decide them all with an exact solving algorithm. Both an instance’s solution probability and its hardness measured in recursions or system time, seems to critically depend on <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></span>, a parameter in the generation procedure that assigns the maximally choosable random side lengths of items in the instance. We numerically characterize the solvability across instance sizes, and derive a rule for generating (un)solvable problem instances of arbitrary size.</p></div>","PeriodicalId":38055,"journal":{"name":"Operations Research Perspectives","volume":"9 ","pages":"Article 100211"},"PeriodicalIF":3.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214716021000270/pdfft?md5=ccae28098995d5ec6b492d9f5160ac53&pid=1-s2.0-S2214716021000270-main.pdf","citationCount":"5","resultStr":"{\"title\":\"Which rectangle sets have perfect packings?\",\"authors\":\"Florian Braam ,&nbsp;Daan van den Berg\",\"doi\":\"10.1016/j.orp.2021.100211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the perfect rectangle packing problem, a set of rectangular items have to be placed inside a rectangular container without overlap or empty space. In this paper, we generate a large number of random instances and decide them all with an exact solving algorithm. Both an instance’s solution probability and its hardness measured in recursions or system time, seems to critically depend on <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></span>, a parameter in the generation procedure that assigns the maximally choosable random side lengths of items in the instance. We numerically characterize the solvability across instance sizes, and derive a rule for generating (un)solvable problem instances of arbitrary size.</p></div>\",\"PeriodicalId\":38055,\"journal\":{\"name\":\"Operations Research Perspectives\",\"volume\":\"9 \",\"pages\":\"Article 100211\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214716021000270/pdfft?md5=ccae28098995d5ec6b492d9f5160ac53&pid=1-s2.0-S2214716021000270-main.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research Perspectives\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214716021000270\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Perspectives","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214716021000270","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 5

摘要

在完美矩形包装问题中,一组矩形物品必须放置在一个矩形容器中,没有重叠或空白空间。在本文中,我们生成了大量的随机实例,并用一种精确求解算法来确定它们。实例的解决概率和它在递归或系统时间中测量的硬度似乎都严重依赖于tmax, tmax是生成过程中的一个参数,用于分配实例中项目的最大可选随机边长度。我们在数值上描述了跨实例大小的可解性,并推导了生成任意大小的(不可)可解问题实例的规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Which rectangle sets have perfect packings?

In the perfect rectangle packing problem, a set of rectangular items have to be placed inside a rectangular container without overlap or empty space. In this paper, we generate a large number of random instances and decide them all with an exact solving algorithm. Both an instance’s solution probability and its hardness measured in recursions or system time, seems to critically depend on tmax, a parameter in the generation procedure that assigns the maximally choosable random side lengths of items in the instance. We numerically characterize the solvability across instance sizes, and derive a rule for generating (un)solvable problem instances of arbitrary size.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operations Research Perspectives
Operations Research Perspectives Mathematics-Statistics and Probability
CiteScore
6.40
自引率
0.00%
发文量
36
审稿时长
27 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信