子群对称左变量控制系统最优控制的LIE-POISSON约简

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Leonardo Colombo, Efstratios Stratoglou
{"title":"子群对称左变量控制系统最优控制的LIE-POISSON约简","authors":"Leonardo Colombo,&nbsp;Efstratios Stratoglou","doi":"10.1016/S0034-4877(23)00015-0","DOIUrl":null,"url":null,"abstract":"<div><p>We study the reduction by symmetries for optimality conditions in optimal control problems of left-invariant affine control systems with partial symmetry breaking cost functions. We recast the optimal control problem as a constrained problem with a partial symmetry breaking Hamiltonian and we obtain the reduced optimality conditions for normal extrema from Pontryagin's Maximum Principle and a Lie--Poisson bracket on the reduced state space. We apply the results to an energy-minimum obstacle avoidance problems.</p></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":"91 1","pages":"Pages 131-141"},"PeriodicalIF":1.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"LIE-POISSON REDUCTION FOR OPTIMAL CONTROL OF LEFT-INVARIANT CONTROL SYSTEMS WITH SUBGROUP SYMMETRY\",\"authors\":\"Leonardo Colombo,&nbsp;Efstratios Stratoglou\",\"doi\":\"10.1016/S0034-4877(23)00015-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the reduction by symmetries for optimality conditions in optimal control problems of left-invariant affine control systems with partial symmetry breaking cost functions. We recast the optimal control problem as a constrained problem with a partial symmetry breaking Hamiltonian and we obtain the reduced optimality conditions for normal extrema from Pontryagin's Maximum Principle and a Lie--Poisson bracket on the reduced state space. We apply the results to an energy-minimum obstacle avoidance problems.</p></div>\",\"PeriodicalId\":49630,\"journal\":{\"name\":\"Reports on Mathematical Physics\",\"volume\":\"91 1\",\"pages\":\"Pages 131-141\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034487723000150\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034487723000150","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1

摘要

研究了具有部分对称性破缺代价函数的左不变仿射控制系统最优控制问题的最优性条件的对称约简。我们将最优控制问题转化为一个具有部分对称破缺哈密顿量的约束问题,并利用简化状态空间上的庞特里亚金极大值原理和Lie—Poisson托架,得到了正规极值的简化最优性条件。我们将结果应用于能量最小的避障问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LIE-POISSON REDUCTION FOR OPTIMAL CONTROL OF LEFT-INVARIANT CONTROL SYSTEMS WITH SUBGROUP SYMMETRY

We study the reduction by symmetries for optimality conditions in optimal control problems of left-invariant affine control systems with partial symmetry breaking cost functions. We recast the optimal control problem as a constrained problem with a partial symmetry breaking Hamiltonian and we obtain the reduced optimality conditions for normal extrema from Pontryagin's Maximum Principle and a Lie--Poisson bracket on the reduced state space. We apply the results to an energy-minimum obstacle avoidance problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reports on Mathematical Physics
Reports on Mathematical Physics 物理-物理:数学物理
CiteScore
1.80
自引率
0.00%
发文量
40
审稿时长
6 months
期刊介绍: Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信