二阶椭圆方程的网格上全局随机游走算法

IF 0.8 Q3 STATISTICS & PROBABILITY
K. Sabelfeld, D. Smirnov, I. Dimov, V. Todorov
{"title":"二阶椭圆方程的网格上全局随机游走算法","authors":"K. Sabelfeld, D. Smirnov, I. Dimov, V. Todorov","doi":"10.1515/mcma-2021-2097","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we develop stochastic simulation methods for solving large systems of linear equations, and focus on two issues: (1) construction of global random walk algorithms (GRW), in particular, for solving systems of elliptic equations on a grid, and (2) development of local stochastic algorithms based on transforms to balanced transition matrix. The GRW method calculates the solution in any desired family of prescribed points of the gird in contrast to the classical stochastic differential equation based Feynman–Kac formula. The use in local random walk methods of balanced transition matrices considerably decreases the variance of the random estimators and hence decreases the computational cost in comparison with the conventional random walk on grids algorithms.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"27 1","pages":"325 - 339"},"PeriodicalIF":0.8000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A global random walk on grid algorithm for second order elliptic equations\",\"authors\":\"K. Sabelfeld, D. Smirnov, I. Dimov, V. Todorov\",\"doi\":\"10.1515/mcma-2021-2097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we develop stochastic simulation methods for solving large systems of linear equations, and focus on two issues: (1) construction of global random walk algorithms (GRW), in particular, for solving systems of elliptic equations on a grid, and (2) development of local stochastic algorithms based on transforms to balanced transition matrix. The GRW method calculates the solution in any desired family of prescribed points of the gird in contrast to the classical stochastic differential equation based Feynman–Kac formula. The use in local random walk methods of balanced transition matrices considerably decreases the variance of the random estimators and hence decreases the computational cost in comparison with the conventional random walk on grids algorithms.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":\"27 1\",\"pages\":\"325 - 339\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2021-2097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2021-2097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

摘要在本文中,我们开发了求解大型线性方程组的随机模拟方法,并重点讨论了两个问题:(1)全局随机游动算法(GRW)的构造,特别是求解网格上的椭圆方程组;(2)基于平衡转移矩阵变换的局部随机算法的开发。与基于经典随机微分方程的Feynman–Kac公式相比,GRW方法计算网格任意指定点族中的解。与传统的网格随机行走算法相比,平衡转移矩阵在局部随机行走方法中的使用显著降低了随机估计量的方差,从而降低了计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A global random walk on grid algorithm for second order elliptic equations
Abstract In this paper we develop stochastic simulation methods for solving large systems of linear equations, and focus on two issues: (1) construction of global random walk algorithms (GRW), in particular, for solving systems of elliptic equations on a grid, and (2) development of local stochastic algorithms based on transforms to balanced transition matrix. The GRW method calculates the solution in any desired family of prescribed points of the gird in contrast to the classical stochastic differential equation based Feynman–Kac formula. The use in local random walk methods of balanced transition matrices considerably decreases the variance of the random estimators and hence decreases the computational cost in comparison with the conventional random walk on grids algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信