{"title":"高光谱反射技术在烤烟黑胫病无创早期检测中的应用","authors":"A. Hayes, T. D. Reed","doi":"10.1255/jsi.2021.a4","DOIUrl":null,"url":null,"abstract":"Flue-cured tobacco (Nicotiana tabacum L.) is a high value-per-acre crop that is intensively managed to optimise the yield of high-quality cured leaf. A 15-day study assessed the potential of hyperspectral reflectance data for detecting Phytophthora nicotianae (black shank) incidence in flue-cured tobacco. Hyperspectral reflectance data were taken from a commercial flue-cured tobacco field with a progressing black shank infestation. The effort encompassed two key objectives. First, develop hyperspectral indices and/or machine learning classification models capable of detecting Phytophthora nicotianae (black shank) incidence in flue-cured tobacco. Second, evaluate the model’s ability to separate pre-symptomatic plants from healthy plants. Two hyperspectral indices were developed to detect black shank incidence based on differences in the spectral profiles of asymptomatic flue-cured tobacco plants compared to those with black shank symptoms. While one of the indices is a broad-band index and the other uses narrow wavelength values, the statistical difference between the two indices was not significant and both provided an accurate classification of symptomatic plants. Further analysis of the indices showed significant differences between the index values of healthy and symptomatic plants (α = 0.05). In addition, the indices were able to detect black shank symptoms pre-symptomatically (α = 0.09). Subspace linear discriminant analysis, a machine learning classification, was also used for prediction of black shank incidence with up to 85.7% classification accuracy. The implications of using either spectral indices or machine learning for classification for future black shank research are discussed.","PeriodicalId":37385,"journal":{"name":"Journal of Spectral Imaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hyperspectral reflectance for non-invasive early detection of black shank disease in flue-cured tobacco\",\"authors\":\"A. Hayes, T. D. Reed\",\"doi\":\"10.1255/jsi.2021.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flue-cured tobacco (Nicotiana tabacum L.) is a high value-per-acre crop that is intensively managed to optimise the yield of high-quality cured leaf. A 15-day study assessed the potential of hyperspectral reflectance data for detecting Phytophthora nicotianae (black shank) incidence in flue-cured tobacco. Hyperspectral reflectance data were taken from a commercial flue-cured tobacco field with a progressing black shank infestation. The effort encompassed two key objectives. First, develop hyperspectral indices and/or machine learning classification models capable of detecting Phytophthora nicotianae (black shank) incidence in flue-cured tobacco. Second, evaluate the model’s ability to separate pre-symptomatic plants from healthy plants. Two hyperspectral indices were developed to detect black shank incidence based on differences in the spectral profiles of asymptomatic flue-cured tobacco plants compared to those with black shank symptoms. While one of the indices is a broad-band index and the other uses narrow wavelength values, the statistical difference between the two indices was not significant and both provided an accurate classification of symptomatic plants. Further analysis of the indices showed significant differences between the index values of healthy and symptomatic plants (α = 0.05). In addition, the indices were able to detect black shank symptoms pre-symptomatically (α = 0.09). Subspace linear discriminant analysis, a machine learning classification, was also used for prediction of black shank incidence with up to 85.7% classification accuracy. The implications of using either spectral indices or machine learning for classification for future black shank research are discussed.\",\"PeriodicalId\":37385,\"journal\":{\"name\":\"Journal of Spectral Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spectral Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1255/jsi.2021.a4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1255/jsi.2021.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 2
摘要
烤烟(Nicotiana tabacum L.)是一种每英亩高价值的作物,通过集约化管理来优化高质量烤烟叶的产量。一项为期15天的研究评估了利用高光谱反射数据检测烟疫霉(黑胫)在烤烟中的发病率的潜力。高光谱反射数据取自一个黑胫病不断蔓延的商业烤烟田。这项努力包括两个关键目标。首先,开发高光谱指数和/或机器学习分类模型,能够检测烟草疫霉(黑胫)在烤烟中的发病率。其次,评估该模型区分症状前植物和健康植物的能力。基于无症状烤烟与有黑胫病症状烤烟光谱分布的差异,开发了两种高光谱指数来检测黑胫病的发生。其中一个指标为宽波段指标,另一个指标为窄波段指标,但两种指标之间的统计差异不显著,均能准确分类对症植物。进一步分析表明,健康植株与对症植株的指数差异有统计学意义(α = 0.05)。此外,这些指标能够在症状前检测到黑胫病(α = 0.09)。子空间线性判别分析(Subspace linear discriminant analysis,一种机器学习分类)也被用于预测黑胫病的发病率,分类准确率高达85.7%。讨论了使用光谱指数或机器学习进行分类对未来黑胫研究的意义。
Hyperspectral reflectance for non-invasive early detection of black shank disease in flue-cured tobacco
Flue-cured tobacco (Nicotiana tabacum L.) is a high value-per-acre crop that is intensively managed to optimise the yield of high-quality cured leaf. A 15-day study assessed the potential of hyperspectral reflectance data for detecting Phytophthora nicotianae (black shank) incidence in flue-cured tobacco. Hyperspectral reflectance data were taken from a commercial flue-cured tobacco field with a progressing black shank infestation. The effort encompassed two key objectives. First, develop hyperspectral indices and/or machine learning classification models capable of detecting Phytophthora nicotianae (black shank) incidence in flue-cured tobacco. Second, evaluate the model’s ability to separate pre-symptomatic plants from healthy plants. Two hyperspectral indices were developed to detect black shank incidence based on differences in the spectral profiles of asymptomatic flue-cured tobacco plants compared to those with black shank symptoms. While one of the indices is a broad-band index and the other uses narrow wavelength values, the statistical difference between the two indices was not significant and both provided an accurate classification of symptomatic plants. Further analysis of the indices showed significant differences between the index values of healthy and symptomatic plants (α = 0.05). In addition, the indices were able to detect black shank symptoms pre-symptomatically (α = 0.09). Subspace linear discriminant analysis, a machine learning classification, was also used for prediction of black shank incidence with up to 85.7% classification accuracy. The implications of using either spectral indices or machine learning for classification for future black shank research are discussed.
期刊介绍:
JSI—Journal of Spectral Imaging is the first journal to bring together current research from the diverse research areas of spectral, hyperspectral and chemical imaging as well as related areas such as remote sensing, chemometrics, data mining and data handling for spectral image data. We believe all those working in Spectral Imaging can benefit from the knowledge of others even in widely different fields. We welcome original research papers, letters, review articles, tutorial papers, short communications and technical notes.