基于实验结果的高层建筑强制对流换热研究与优化

IF 2.1 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
Javad Babakhani, F. Veysi
{"title":"基于实验结果的高层建筑强制对流换热研究与优化","authors":"Javad Babakhani, F. Veysi","doi":"10.1108/ijbpa-01-2022-0012","DOIUrl":null,"url":null,"abstract":"PurposeThe purpose of this article is to investigate the variables affecting heat transfer from the surfaces of a tall building and also the extent of the impact of each of them. Another purpose of this paper is to provide a suitable model for estimating the heat transfer coefficient of the external surfaces of the building according to the impact of variables.Design/methodology/approachIn this study, the Taguchi's approach in the design of the experiments was used to reduce the number of experiments. Percent contributions factors into the overall and surface-averaged Nu of a square prism were obtained by the (ANOVA). The change in Nu by changing either of T, P, angle of attack and V were investigated by the (ANOM). The most significant factors affecting the value Nu were also identified to facilitate the design of thermal systems by eliminating the factors imposing no significant effect on the response in the molding phase. The set of conditions under which the air properties remained unchanged was identified. Five correlations were formulated to predict Nu.FindingsModels used in BES, in which the effects of T, P, A and geometrical effects are not accounted for, are not reliable. The air pressure was found to impose no significant effect on the overall Nu of the considered square prism. Studied in the range of 274–303 K, the air temperature imposed a significant effect on the overall Nu. The results of ANOVA show the significant role of Re to predict Nu of tall buildings.Originality/valueThis article is taken from a doctoral dissertation.","PeriodicalId":44905,"journal":{"name":"International Journal of Building Pathology and Adaptation","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation and optimization of forced convective heat transfer around a tall building using experimental results\",\"authors\":\"Javad Babakhani, F. Veysi\",\"doi\":\"10.1108/ijbpa-01-2022-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThe purpose of this article is to investigate the variables affecting heat transfer from the surfaces of a tall building and also the extent of the impact of each of them. Another purpose of this paper is to provide a suitable model for estimating the heat transfer coefficient of the external surfaces of the building according to the impact of variables.Design/methodology/approachIn this study, the Taguchi's approach in the design of the experiments was used to reduce the number of experiments. Percent contributions factors into the overall and surface-averaged Nu of a square prism were obtained by the (ANOVA). The change in Nu by changing either of T, P, angle of attack and V were investigated by the (ANOM). The most significant factors affecting the value Nu were also identified to facilitate the design of thermal systems by eliminating the factors imposing no significant effect on the response in the molding phase. The set of conditions under which the air properties remained unchanged was identified. Five correlations were formulated to predict Nu.FindingsModels used in BES, in which the effects of T, P, A and geometrical effects are not accounted for, are not reliable. The air pressure was found to impose no significant effect on the overall Nu of the considered square prism. Studied in the range of 274–303 K, the air temperature imposed a significant effect on the overall Nu. The results of ANOVA show the significant role of Re to predict Nu of tall buildings.Originality/valueThis article is taken from a doctoral dissertation.\",\"PeriodicalId\":44905,\"journal\":{\"name\":\"International Journal of Building Pathology and Adaptation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Building Pathology and Adaptation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijbpa-01-2022-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Building Pathology and Adaptation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijbpa-01-2022-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的是研究影响高层建筑表面传热的变量,以及每个变量的影响程度。本文的另一个目的是根据变量的影响,提供一个合适的模型来估算建筑外表面的传热系数。设计/方法学/方法本研究采用田口法设计实验,以减少实验数量。通过方差分析(ANOVA)获得了正方形棱镜的总Nu和表面平均Nu的百分比贡献因子。用ANOM法研究了T、P、攻角和V的变化对Nu的影响。还确定了影响Nu值的最重要因素,以便通过消除在成型阶段对响应没有显著影响的因素来促进热系统的设计。确定了空气性质保持不变的一系列条件。建立了五个相关性来预测Nu。发现在BES中使用的模型,没有考虑到T、P、A和几何效应的影响,是不可靠的。发现空气压力对所考虑的方形棱镜的总体Nu没有显著影响。在274 ~ 303 K范围内,空气温度对总体Nu有显著影响。方差分析结果表明,Re对高层建筑的Nu具有显著的预测作用。原创性/价值本文摘自一篇博士论文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation and optimization of forced convective heat transfer around a tall building using experimental results
PurposeThe purpose of this article is to investigate the variables affecting heat transfer from the surfaces of a tall building and also the extent of the impact of each of them. Another purpose of this paper is to provide a suitable model for estimating the heat transfer coefficient of the external surfaces of the building according to the impact of variables.Design/methodology/approachIn this study, the Taguchi's approach in the design of the experiments was used to reduce the number of experiments. Percent contributions factors into the overall and surface-averaged Nu of a square prism were obtained by the (ANOVA). The change in Nu by changing either of T, P, angle of attack and V were investigated by the (ANOM). The most significant factors affecting the value Nu were also identified to facilitate the design of thermal systems by eliminating the factors imposing no significant effect on the response in the molding phase. The set of conditions under which the air properties remained unchanged was identified. Five correlations were formulated to predict Nu.FindingsModels used in BES, in which the effects of T, P, A and geometrical effects are not accounted for, are not reliable. The air pressure was found to impose no significant effect on the overall Nu of the considered square prism. Studied in the range of 274–303 K, the air temperature imposed a significant effect on the overall Nu. The results of ANOVA show the significant role of Re to predict Nu of tall buildings.Originality/valueThis article is taken from a doctoral dissertation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
18.20%
发文量
76
期刊介绍: The International Journal of Building Pathology and Adaptation publishes findings on contemporary and original research towards sustaining, maintaining and managing existing buildings. The journal provides an interdisciplinary approach to the study of buildings, their performance and adaptation in order to develop appropriate technical and management solutions. This requires an holistic understanding of the complex interactions between the materials, components, occupants, design and environment, demanding the application and development of methodologies for diagnosis, prognosis and treatment in this multidisciplinary area. With rapid technological developments, a changing climate and more extreme weather, coupled with developing societal demands, the challenges to the professions responsible are complex and varied; solutions need to be rigorously researched and tested to navigate the dynamic context in which today''s buildings are to be sustained. Within this context, the scope and coverage of the journal incorporates the following indicative topics: • Behavioural and human responses • Building defects and prognosis • Building adaptation and retrofit • Building conservation and restoration • Building Information Modelling (BIM) • Building and planning regulations and legislation • Building technology • Conflict avoidance, management and disputes resolution • Digital information and communication technologies • Education and training • Environmental performance • Energy management • Health, safety and welfare issues • Healthy enclosures • Innovations and innovative technologies • Law and practice of dilapidation • Maintenance and refurbishment • Materials testing • Policy formulation and development • Project management • Resilience • Structural considerations • Surveying methodologies and techniques • Sustainability and climate change • Valuation and financial investment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信