{"title":"基于实验结果的高层建筑强制对流换热研究与优化","authors":"Javad Babakhani, F. Veysi","doi":"10.1108/ijbpa-01-2022-0012","DOIUrl":null,"url":null,"abstract":"PurposeThe purpose of this article is to investigate the variables affecting heat transfer from the surfaces of a tall building and also the extent of the impact of each of them. Another purpose of this paper is to provide a suitable model for estimating the heat transfer coefficient of the external surfaces of the building according to the impact of variables.Design/methodology/approachIn this study, the Taguchi's approach in the design of the experiments was used to reduce the number of experiments. Percent contributions factors into the overall and surface-averaged Nu of a square prism were obtained by the (ANOVA). The change in Nu by changing either of T, P, angle of attack and V were investigated by the (ANOM). The most significant factors affecting the value Nu were also identified to facilitate the design of thermal systems by eliminating the factors imposing no significant effect on the response in the molding phase. The set of conditions under which the air properties remained unchanged was identified. Five correlations were formulated to predict Nu.FindingsModels used in BES, in which the effects of T, P, A and geometrical effects are not accounted for, are not reliable. The air pressure was found to impose no significant effect on the overall Nu of the considered square prism. Studied in the range of 274–303 K, the air temperature imposed a significant effect on the overall Nu. The results of ANOVA show the significant role of Re to predict Nu of tall buildings.Originality/valueThis article is taken from a doctoral dissertation.","PeriodicalId":44905,"journal":{"name":"International Journal of Building Pathology and Adaptation","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation and optimization of forced convective heat transfer around a tall building using experimental results\",\"authors\":\"Javad Babakhani, F. Veysi\",\"doi\":\"10.1108/ijbpa-01-2022-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThe purpose of this article is to investigate the variables affecting heat transfer from the surfaces of a tall building and also the extent of the impact of each of them. Another purpose of this paper is to provide a suitable model for estimating the heat transfer coefficient of the external surfaces of the building according to the impact of variables.Design/methodology/approachIn this study, the Taguchi's approach in the design of the experiments was used to reduce the number of experiments. Percent contributions factors into the overall and surface-averaged Nu of a square prism were obtained by the (ANOVA). The change in Nu by changing either of T, P, angle of attack and V were investigated by the (ANOM). The most significant factors affecting the value Nu were also identified to facilitate the design of thermal systems by eliminating the factors imposing no significant effect on the response in the molding phase. The set of conditions under which the air properties remained unchanged was identified. Five correlations were formulated to predict Nu.FindingsModels used in BES, in which the effects of T, P, A and geometrical effects are not accounted for, are not reliable. The air pressure was found to impose no significant effect on the overall Nu of the considered square prism. Studied in the range of 274–303 K, the air temperature imposed a significant effect on the overall Nu. The results of ANOVA show the significant role of Re to predict Nu of tall buildings.Originality/valueThis article is taken from a doctoral dissertation.\",\"PeriodicalId\":44905,\"journal\":{\"name\":\"International Journal of Building Pathology and Adaptation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Building Pathology and Adaptation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijbpa-01-2022-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Building Pathology and Adaptation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijbpa-01-2022-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Investigation and optimization of forced convective heat transfer around a tall building using experimental results
PurposeThe purpose of this article is to investigate the variables affecting heat transfer from the surfaces of a tall building and also the extent of the impact of each of them. Another purpose of this paper is to provide a suitable model for estimating the heat transfer coefficient of the external surfaces of the building according to the impact of variables.Design/methodology/approachIn this study, the Taguchi's approach in the design of the experiments was used to reduce the number of experiments. Percent contributions factors into the overall and surface-averaged Nu of a square prism were obtained by the (ANOVA). The change in Nu by changing either of T, P, angle of attack and V were investigated by the (ANOM). The most significant factors affecting the value Nu were also identified to facilitate the design of thermal systems by eliminating the factors imposing no significant effect on the response in the molding phase. The set of conditions under which the air properties remained unchanged was identified. Five correlations were formulated to predict Nu.FindingsModels used in BES, in which the effects of T, P, A and geometrical effects are not accounted for, are not reliable. The air pressure was found to impose no significant effect on the overall Nu of the considered square prism. Studied in the range of 274–303 K, the air temperature imposed a significant effect on the overall Nu. The results of ANOVA show the significant role of Re to predict Nu of tall buildings.Originality/valueThis article is taken from a doctoral dissertation.
期刊介绍:
The International Journal of Building Pathology and Adaptation publishes findings on contemporary and original research towards sustaining, maintaining and managing existing buildings. The journal provides an interdisciplinary approach to the study of buildings, their performance and adaptation in order to develop appropriate technical and management solutions. This requires an holistic understanding of the complex interactions between the materials, components, occupants, design and environment, demanding the application and development of methodologies for diagnosis, prognosis and treatment in this multidisciplinary area. With rapid technological developments, a changing climate and more extreme weather, coupled with developing societal demands, the challenges to the professions responsible are complex and varied; solutions need to be rigorously researched and tested to navigate the dynamic context in which today''s buildings are to be sustained. Within this context, the scope and coverage of the journal incorporates the following indicative topics: • Behavioural and human responses • Building defects and prognosis • Building adaptation and retrofit • Building conservation and restoration • Building Information Modelling (BIM) • Building and planning regulations and legislation • Building technology • Conflict avoidance, management and disputes resolution • Digital information and communication technologies • Education and training • Environmental performance • Energy management • Health, safety and welfare issues • Healthy enclosures • Innovations and innovative technologies • Law and practice of dilapidation • Maintenance and refurbishment • Materials testing • Policy formulation and development • Project management • Resilience • Structural considerations • Surveying methodologies and techniques • Sustainability and climate change • Valuation and financial investment