{"title":"基于分位数回归神经网络的风险价值:来自互联网金融公司的新证据","authors":"Li Zeng, Wee-Yeap Lau, Elya Nabila Abdul Bahri","doi":"10.1002/asmb.2808","DOIUrl":null,"url":null,"abstract":"<p>Traditional risk measurements have proven inadequate in capturing tail risk and nonlinear correlation. This study proposes a novel approach to measure financial risk in the Internet finance industry: a new Value-at-Risk (VaR) measurement based on quantile regression neural network (QRNN). Sparrow Search Algorithm (SSA) is utilized to optimize the QRNN model, which improves the model's performance in predicting internet finance risk. By comparing the TGARCH-VaR and QR-VaR approaches, our study demonstrates the effectiveness of the QRNN-VaR approach and its potential to improve the accuracy of risk prediction in the Internet finance industry. This study further examines and compares the risks between the traditional and internet finance industries. It also considers the unique impact of COVID-19 on industry risk based on statistical testing for differences and machine learning models. Our results indicate that the level of risk in the Internet finance industry is higher than in the traditional finance industry. Moreover, COVID-19 has contributed to increased risk within the Internet finance industry. These findings have significant implications for investors and policymakers seeking to better understand and manage risks within the Internet finance industry, particularly in the ongoing COVID-19 pandemic.</p>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Value-at-Risk with quantile regression neural network: New evidence from internet finance firms\",\"authors\":\"Li Zeng, Wee-Yeap Lau, Elya Nabila Abdul Bahri\",\"doi\":\"10.1002/asmb.2808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Traditional risk measurements have proven inadequate in capturing tail risk and nonlinear correlation. This study proposes a novel approach to measure financial risk in the Internet finance industry: a new Value-at-Risk (VaR) measurement based on quantile regression neural network (QRNN). Sparrow Search Algorithm (SSA) is utilized to optimize the QRNN model, which improves the model's performance in predicting internet finance risk. By comparing the TGARCH-VaR and QR-VaR approaches, our study demonstrates the effectiveness of the QRNN-VaR approach and its potential to improve the accuracy of risk prediction in the Internet finance industry. This study further examines and compares the risks between the traditional and internet finance industries. It also considers the unique impact of COVID-19 on industry risk based on statistical testing for differences and machine learning models. Our results indicate that the level of risk in the Internet finance industry is higher than in the traditional finance industry. Moreover, COVID-19 has contributed to increased risk within the Internet finance industry. These findings have significant implications for investors and policymakers seeking to better understand and manage risks within the Internet finance industry, particularly in the ongoing COVID-19 pandemic.</p>\",\"PeriodicalId\":55495,\"journal\":{\"name\":\"Applied Stochastic Models in Business and Industry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Stochastic Models in Business and Industry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2808\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2808","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Value-at-Risk with quantile regression neural network: New evidence from internet finance firms
Traditional risk measurements have proven inadequate in capturing tail risk and nonlinear correlation. This study proposes a novel approach to measure financial risk in the Internet finance industry: a new Value-at-Risk (VaR) measurement based on quantile regression neural network (QRNN). Sparrow Search Algorithm (SSA) is utilized to optimize the QRNN model, which improves the model's performance in predicting internet finance risk. By comparing the TGARCH-VaR and QR-VaR approaches, our study demonstrates the effectiveness of the QRNN-VaR approach and its potential to improve the accuracy of risk prediction in the Internet finance industry. This study further examines and compares the risks between the traditional and internet finance industries. It also considers the unique impact of COVID-19 on industry risk based on statistical testing for differences and machine learning models. Our results indicate that the level of risk in the Internet finance industry is higher than in the traditional finance industry. Moreover, COVID-19 has contributed to increased risk within the Internet finance industry. These findings have significant implications for investors and policymakers seeking to better understand and manage risks within the Internet finance industry, particularly in the ongoing COVID-19 pandemic.
期刊介绍:
ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process.
The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.