{"title":"将简单而精确的P值与复杂而模糊的现实联系起来(包括对“分歧与决策P值”评论的反驳)","authors":"S. Greenland","doi":"10.1111/sjos.12645","DOIUrl":null,"url":null,"abstract":"Mathematics is a limited component of solutions to real‐world problems, as it expresses only what is expected to be true if all our assumptions are correct, including implicit assumptions that are omnipresent and often incorrect. Statistical methods are rife with implicit assumptions whose violation can be life‐threatening when results from them are used to set policy. Among them are that there is human equipoise or unbiasedness in data generation, management, analysis, and reporting. These assumptions correspond to levels of cooperation, competence, neutrality, and integrity that are absent more often than we would like to believe. Given this harsh reality, we should ask what meaning, if any, we can assign to the P‐values, “statistical significance” declarations, “confidence” intervals, and posterior probabilities that are used to decide what and how to present (or spin) discussions of analyzed data. By themselves, P‐values and CI do not test any hypothesis, nor do they measure the significance of results or the confidence we should have in them. The sense otherwise is an ongoing cultural error perpetuated by large segments of the statistical and research community via misleading terminology. So‐called inferential statistics can only become contextually interpretable when derived explicitly from causal stories about the real data generator (such as randomization), and can only become reliable when those stories are based on valid and public documentation of the physical mechanisms that generated the data. Absent these assurances, traditional interpretations of statistical results become pernicious fictions that need to be replaced by far more circumspect descriptions of data and model relations.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":"50 1","pages":"899 - 914"},"PeriodicalIF":0.8000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Connecting simple and precise P‐values to complex and ambiguous realities (includes rejoinder to comments on “Divergence vs. decision P‐values”)\",\"authors\":\"S. Greenland\",\"doi\":\"10.1111/sjos.12645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mathematics is a limited component of solutions to real‐world problems, as it expresses only what is expected to be true if all our assumptions are correct, including implicit assumptions that are omnipresent and often incorrect. Statistical methods are rife with implicit assumptions whose violation can be life‐threatening when results from them are used to set policy. Among them are that there is human equipoise or unbiasedness in data generation, management, analysis, and reporting. These assumptions correspond to levels of cooperation, competence, neutrality, and integrity that are absent more often than we would like to believe. Given this harsh reality, we should ask what meaning, if any, we can assign to the P‐values, “statistical significance” declarations, “confidence” intervals, and posterior probabilities that are used to decide what and how to present (or spin) discussions of analyzed data. By themselves, P‐values and CI do not test any hypothesis, nor do they measure the significance of results or the confidence we should have in them. The sense otherwise is an ongoing cultural error perpetuated by large segments of the statistical and research community via misleading terminology. So‐called inferential statistics can only become contextually interpretable when derived explicitly from causal stories about the real data generator (such as randomization), and can only become reliable when those stories are based on valid and public documentation of the physical mechanisms that generated the data. Absent these assurances, traditional interpretations of statistical results become pernicious fictions that need to be replaced by far more circumspect descriptions of data and model relations.\",\"PeriodicalId\":49567,\"journal\":{\"name\":\"Scandinavian Journal of Statistics\",\"volume\":\"50 1\",\"pages\":\"899 - 914\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/sjos.12645\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/sjos.12645","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Connecting simple and precise P‐values to complex and ambiguous realities (includes rejoinder to comments on “Divergence vs. decision P‐values”)
Mathematics is a limited component of solutions to real‐world problems, as it expresses only what is expected to be true if all our assumptions are correct, including implicit assumptions that are omnipresent and often incorrect. Statistical methods are rife with implicit assumptions whose violation can be life‐threatening when results from them are used to set policy. Among them are that there is human equipoise or unbiasedness in data generation, management, analysis, and reporting. These assumptions correspond to levels of cooperation, competence, neutrality, and integrity that are absent more often than we would like to believe. Given this harsh reality, we should ask what meaning, if any, we can assign to the P‐values, “statistical significance” declarations, “confidence” intervals, and posterior probabilities that are used to decide what and how to present (or spin) discussions of analyzed data. By themselves, P‐values and CI do not test any hypothesis, nor do they measure the significance of results or the confidence we should have in them. The sense otherwise is an ongoing cultural error perpetuated by large segments of the statistical and research community via misleading terminology. So‐called inferential statistics can only become contextually interpretable when derived explicitly from causal stories about the real data generator (such as randomization), and can only become reliable when those stories are based on valid and public documentation of the physical mechanisms that generated the data. Absent these assurances, traditional interpretations of statistical results become pernicious fictions that need to be replaced by far more circumspect descriptions of data and model relations.
期刊介绍:
The Scandinavian Journal of Statistics is internationally recognised as one of the leading statistical journals in the world. It was founded in 1974 by four Scandinavian statistical societies. Today more than eighty per cent of the manuscripts are submitted from outside Scandinavia.
It is an international journal devoted to reporting significant and innovative original contributions to statistical methodology, both theory and applications.
The journal specializes in statistical modelling showing particular appreciation of the underlying substantive research problems.
The emergence of specialized methods for analysing longitudinal and spatial data is just one example of an area of important methodological development in which the Scandinavian Journal of Statistics has a particular niche.