伯克霍夫定理真的成立吗?

Wenbin Lin
{"title":"伯克霍夫定理真的成立吗?","authors":"Wenbin Lin","doi":"10.1080/23311940.2017.1357325","DOIUrl":null,"url":null,"abstract":"Abstract Birkhoff’s theorem states that the external gravitational field of any spherically-symmetric system is static and is described by Schwarzschild metric. In this paper, we demonstrate that it is inconsistent with the direct post-Newtonian solution to Einstein field equations in the weak field limit. Moreover, we identify the flaw in the derivation of Birkhoff’s theorem—the consequences of making the coordinate transformations for solving Einstein field equations are ignored, which is due to the misuse of the covariance in general relativity.","PeriodicalId":43050,"journal":{"name":"Cogent Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23311940.2017.1357325","citationCount":"0","resultStr":"{\"title\":\"Does Birkhoff’s theorem really hold?\",\"authors\":\"Wenbin Lin\",\"doi\":\"10.1080/23311940.2017.1357325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Birkhoff’s theorem states that the external gravitational field of any spherically-symmetric system is static and is described by Schwarzschild metric. In this paper, we demonstrate that it is inconsistent with the direct post-Newtonian solution to Einstein field equations in the weak field limit. Moreover, we identify the flaw in the derivation of Birkhoff’s theorem—the consequences of making the coordinate transformations for solving Einstein field equations are ignored, which is due to the misuse of the covariance in general relativity.\",\"PeriodicalId\":43050,\"journal\":{\"name\":\"Cogent Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23311940.2017.1357325\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23311940.2017.1357325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311940.2017.1357325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要Birkhoff定理指出,任何球对称系统的外部引力场都是静态的,并用Schwarzschild度量描述。在本文中,我们证明了它与弱场极限下爱因斯坦场方程的后牛顿直接解不一致。此外,我们还发现了Birkhoff定理推导中的缺陷——忽略了求解爱因斯坦场方程的坐标变换的后果,这是由于广义相对论中协方差的滥用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Does Birkhoff’s theorem really hold?
Abstract Birkhoff’s theorem states that the external gravitational field of any spherically-symmetric system is static and is described by Schwarzschild metric. In this paper, we demonstrate that it is inconsistent with the direct post-Newtonian solution to Einstein field equations in the weak field limit. Moreover, we identify the flaw in the derivation of Birkhoff’s theorem—the consequences of making the coordinate transformations for solving Einstein field equations are ignored, which is due to the misuse of the covariance in general relativity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cogent Physics
Cogent Physics PHYSICS, MULTIDISCIPLINARY-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信