A. Benabdellah, K. Negadi, Y. Chaker, B. Fetouhi, M. Debdab, H. Bélarbi, M. Hatti
{"title":"基于聚(离子液体)/离子液体/ TiO2复合准固态电解质提高染料敏化太阳能电池性能","authors":"A. Benabdellah, K. Negadi, Y. Chaker, B. Fetouhi, M. Debdab, H. Bélarbi, M. Hatti","doi":"10.14447/jnmes.v24i4.a06","DOIUrl":null,"url":null,"abstract":"Composite gel electrolytes of poly(IL) /IL/TiO 2 containing poly [1-(hydroxyethyl)-3-vinylimidazolium hydrogen sulfate] (poly [EtOHVIM ⁺ ][HSO 4 ⁻ ]) as Poly(IL), 1-butyl-3-methyl- imidazolium hexafluorophosphate ([BMIM] PF 6 ) as IL and Titanium Dioxide (TiO 2 ) are prepared for dye-sensitized solar cells (DSSCs), without any volatile organic solvent. The performance of most (DSSCs) based on TiO 2 was limited by the low electron mobility within TiO 2 . To produce a much higher power conversion efficiency performance and better long-term stability of the composite electrolyte without TiO 2 , a proper amount of TiO 2 was added. Overall power conversion efficiency of 7.46% under simulated AM 1.5 solar spectrum irradiation for (DSSCs) based on the composite electrolytes were showed. This type of composite electrolytes had long-term stability of the (DSSCs), could overcome the drawbacks of volatile liquid electrolytes, and offer a feasible method to fabricate (DSSCs) in future practical applications.","PeriodicalId":16447,"journal":{"name":"Journal of New Materials For Electrochemical Systems","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Performance of Dye Sensitized Solar Cells Based On Composite Quasi Solid-State Electrolytes of Poly (ionic liquid) / Ionic liquid / TiO2\",\"authors\":\"A. Benabdellah, K. Negadi, Y. Chaker, B. Fetouhi, M. Debdab, H. Bélarbi, M. Hatti\",\"doi\":\"10.14447/jnmes.v24i4.a06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Composite gel electrolytes of poly(IL) /IL/TiO 2 containing poly [1-(hydroxyethyl)-3-vinylimidazolium hydrogen sulfate] (poly [EtOHVIM ⁺ ][HSO 4 ⁻ ]) as Poly(IL), 1-butyl-3-methyl- imidazolium hexafluorophosphate ([BMIM] PF 6 ) as IL and Titanium Dioxide (TiO 2 ) are prepared for dye-sensitized solar cells (DSSCs), without any volatile organic solvent. The performance of most (DSSCs) based on TiO 2 was limited by the low electron mobility within TiO 2 . To produce a much higher power conversion efficiency performance and better long-term stability of the composite electrolyte without TiO 2 , a proper amount of TiO 2 was added. Overall power conversion efficiency of 7.46% under simulated AM 1.5 solar spectrum irradiation for (DSSCs) based on the composite electrolytes were showed. This type of composite electrolytes had long-term stability of the (DSSCs), could overcome the drawbacks of volatile liquid electrolytes, and offer a feasible method to fabricate (DSSCs) in future practical applications.\",\"PeriodicalId\":16447,\"journal\":{\"name\":\"Journal of New Materials For Electrochemical Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of New Materials For Electrochemical Systems\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.14447/jnmes.v24i4.a06\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of New Materials For Electrochemical Systems","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.14447/jnmes.v24i4.a06","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Improving Performance of Dye Sensitized Solar Cells Based On Composite Quasi Solid-State Electrolytes of Poly (ionic liquid) / Ionic liquid / TiO2
Composite gel electrolytes of poly(IL) /IL/TiO 2 containing poly [1-(hydroxyethyl)-3-vinylimidazolium hydrogen sulfate] (poly [EtOHVIM ⁺ ][HSO 4 ⁻ ]) as Poly(IL), 1-butyl-3-methyl- imidazolium hexafluorophosphate ([BMIM] PF 6 ) as IL and Titanium Dioxide (TiO 2 ) are prepared for dye-sensitized solar cells (DSSCs), without any volatile organic solvent. The performance of most (DSSCs) based on TiO 2 was limited by the low electron mobility within TiO 2 . To produce a much higher power conversion efficiency performance and better long-term stability of the composite electrolyte without TiO 2 , a proper amount of TiO 2 was added. Overall power conversion efficiency of 7.46% under simulated AM 1.5 solar spectrum irradiation for (DSSCs) based on the composite electrolytes were showed. This type of composite electrolytes had long-term stability of the (DSSCs), could overcome the drawbacks of volatile liquid electrolytes, and offer a feasible method to fabricate (DSSCs) in future practical applications.
期刊介绍:
This international Journal is intended for the publication of original work, both analytical and experimental, and of reviews and commercial aspects related to the field of New Materials for Electrochemical Systems. The emphasis will be on research both of a fundamental and an applied nature in various aspects of the development of new materials in electrochemical systems.