{"title":"非半单模块类别的扩展TQFT","authors":"M. Renzi","doi":"10.1512/iumj.2021.70.9364","DOIUrl":null,"url":null,"abstract":"We construct 3-dimensional once-Extended Topological Quantum Field Theories (ETQFTs for short) out of (possibly non-semisimple) modular categories, and we explicitly identify linear categories and functors in their image. The circle category of an ETQFT produced by our construction is equivalent to the full subcategory of projective objects of the underlying modular category. In particular, it need not be semisimple.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Extended TQFTs from non-semisimple modular categories\",\"authors\":\"M. Renzi\",\"doi\":\"10.1512/iumj.2021.70.9364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct 3-dimensional once-Extended Topological Quantum Field Theories (ETQFTs for short) out of (possibly non-semisimple) modular categories, and we explicitly identify linear categories and functors in their image. The circle category of an ETQFT produced by our construction is equivalent to the full subcategory of projective objects of the underlying modular category. In particular, it need not be semisimple.\",\"PeriodicalId\":50369,\"journal\":{\"name\":\"Indiana University Mathematics Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indiana University Mathematics Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1512/iumj.2021.70.9364\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2021.70.9364","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Extended TQFTs from non-semisimple modular categories
We construct 3-dimensional once-Extended Topological Quantum Field Theories (ETQFTs for short) out of (possibly non-semisimple) modular categories, and we explicitly identify linear categories and functors in their image. The circle category of an ETQFT produced by our construction is equivalent to the full subcategory of projective objects of the underlying modular category. In particular, it need not be semisimple.